量子科学应用范例(3篇)
量子科学应用范文
以上所提到的这些矛盾和问题直接制约了应用型本科院校机电、信息类专业的电工电子实践教学质量乃至总体教学质量的提高,分析并解决这些矛盾(问题)刻不容缓。可拓学又称物元分析法,它利用形式化模型分析研究事物拓展的可能性和开拓创新的规律,找出解决矛盾问题的方法。本研究以可拓学的理论为指导,探索应用型本科院校中电工电子课程实践教学的绩效评价体系的建立。采用定量与定性、理论和实际相结合的研究方法,运用可拓学中的相关网、共轭对、发散树、蕴含系等可拓方法,生成绩效评价的指标体系,以此指导教学工作,提高电工电子实践课程的教学质量。电工电子实践教学质量评价是一项复杂的工程,评价指标要将看似无法评价、衡量的评价目标进行合理分解,最终形成不同层次的指标体系,做到评价具备完整性、准确性、客观性、可比性。基于可拓学理论的研究方法,笔者提炼出电工电子实践教学绩效评价的多级指标:2个一级指标,5个二级指标,16个三级指标,每个三级指标再派生出若干个与之对应的四级评价指标,如表1所示[3-6]。设计的指标体系要体现以下几点要求:1)以学生能力的提升为根本,能力的提升是教学的基本特征,也是构建电工电子实践教学评价体系的基本原则。2)以学生就业为导向,即强调以社会需求为导向,电工电子实践教学的内容和深度与社会需求相适应,以学生就业和社会需要作为指导来确定课程实践教学的评价目标。3)以过程控制作为评价的重点,从计划制订、课程体系、课程内容到教学实施,整个教学过程考核中都是电工电子实践教学的质量评价的对象,这些环节环环相扣,只有把控每个环节,才能保证电工电子实践教学质量。4)评价体系要有整体性、系统性,能够全面反映电工电子技术实践教学的总体质量。5)评价体系既要标准统一、客观公正,又要有鼓励个性化发展的相关指标[7-8],既要有可以横向比较的统一标准,又要顾及个性发展的指标。
2指标权重系数的确定
在所设计的应用型本科院校的电工电子实践教学质量评价体系中,各级指标权重系数的确定采用了美国兰德公司发明的德尔菲法作为专家咨询。咨询流程如图1所示[9-11]。
2.1专家资格认定德尔菲法对专家的身份确定有严格的要求,根据询问的电工电子实践教学质量评价的内容特点及要求,确定有咨询专家资格的包括:全国应用型本科院校具有高级专业技术职称并从事电工电子实践教学10年以上的教师,全国应用型本科院校从事电工电子技术实践教学管理的中、高层管理人员,各种类型企业有关电工电子技术的生产和技术开发负责人,各种类型企业负责招聘有关电工电子技术工作的人事经理,工龄5年以上的企业一线优秀相关电工电子技术工程师,从事第一线生产、经营、管理工作3~5年的应用型本科院校优秀毕业生。
2.2专家咨询过程设计专家咨询过程按照结果分为n轮,在第一轮的专家咨询中,选取具有3.1中规定专家资格的咨询专家50名,要求每名咨询专家独立为各级评价指标确定系数。各级指标系数用百分数表示,由上一级派生出的各个派生指标的系数总和为100%。第一轮向每位专家发出系数表格一份,要求按照各自的经验独立填写各级指标系数。回收到各专家的填写结果后,对各专家填写确定的权重系数进行统计,统计方法采用去掉最大最小值后取平均的方法。通过计算得到初步的权重系数。第二轮的专家咨询,同样选取第一轮的50名专家,向每位专家发函,并附上上一轮所有专家的各系数分布,以及最终系数的确定算法。要求为评价体系及系数合理性打分,并提供更改意见,为下一轮系数修改提供依据。
2.3权重系数的确定重复进行第二轮专家咨询过程,直到各专家对评价系统打分的平均分趋于稳定的最高分,所对应的系数就是得到的各个指标最终的权重系数。
2.4指标及权重系数的修正根据试点执行的结果,在保持主要指标和系数稳定的前提下,每年可以允许10%以内的指标或者系数修正,修正流程参照3.2中的专家咨询流程。
3结语
量子科学应用范文
关键词:道尔顿;分子量;相对分子质量;量和单位;量符号
1引言
在生物学和医学研究论文中,常会碰到一些看似简单,实则使人头痛的物理量、计量单位和符号问题。例如,作者常常需要对研究的目标物质进行描述,其中一个重要的指标就是其分子大小。在我们的编辑实践当中发现,来稿中很多研究论文在描述关于物质分子大小时存在着这样的现象:多数研究论文仍然使用“分子量”这一物理量,以“道尔顿”或“千道尔顿”为单位(××D或××kD)来描述;有的使用了“相对分子质量”这一物理量但是书写却不正确;只有极少部分论文正确地使用和书写了这一物理量。究竟应如何正确使用?
2描述物质分子大小的物理量
对所研究的原子和分子的质量进行描述,以往多使用“道尔顿(D)”这一单位。英国化学家JohnDalton(1766-1844)是近代化学之父,在化学方面提出了定量的概念,总结出了质量守恒定律、定比定律和化合量(当量)定律。在此基础上,1803年又发现了化合物的倍比定律,提出了元素的原子量概念,并制成最早的原子量表。人们为了纪念道尔顿,以他的名字作为原子质量单位,定义为12C原子质量的1/12,1D=1/Ng,N为阿伏加德罗常数。
以往我们常用的描述物质分子大小的物理量是分子量,它是“单质或化合物以分子形式存在时的相对质量”[1]。我们知道,以一个12C重量的1/12为标准,其他的原子质量同这标准相对照得出相对质量,称为这个原子的原子量[2]。分子量是物质分子或特定单元的平均质量与核素12C原子质量的1/12之比,等于分子中原子的原子量之和[3]。
对于分子来说,一个分子的质量,用道尔顿表示时,应该是“蛋白质A的质量为××道尔顿”。因为分子量为该物质的分子的质量与12C原子的质量的1/12之比,所以如果说“蛋白质A的分子量为××道尔顿”,乃是不正确的表示方法。
3国家标准中规定的物理量
道尔顿是核物理与反应堆技术中惯用的质量旧单位,自1960年起,用原子质量单位(u)代替它,规定1dalton=1u≈1.6605402×10-27kg[4]。
作为国家标准,与国际标准一致,现行有效的1993年修订的国家标准《量和单位》选择了“相对原子质量”和“相对分子质量”这两个物理量名称,并在GB3102.8—93的引言中说明:“本标准中的相对原子质量Ar和相对分子质量Mr,以前分别称为原子量和分子量,在使用中,应有计划地逐步采用本标准的名称。”
所谓相对原子质量Ar是指“元素的平均原子质量与核素12C原子质量的1/12之比”,即Ar=m/mu(m为元素的平均原子质量);物质的相对分子质量是指“物质的分子或特定单元的平均质量与核素12C原子质量的1/12之比”,即Mr=m/mu(m为物质的平均分子质量)。它们是量纲一的量,其单位为1[5]161。
4正确运用“相对分子质量”等物理量和单位
由于历史的原因,在道尔顿当初提出原子量的概念时指出,“同一种元素的原子有相同的重量(weight),不同元素的原子有不同的重量。”因此“atomicweight”在中文里翻译成了“原子量”。但是当时重量和质量(mass)是相同的概念,实际中获得的都是原子的相对质量,但仍然称作原子量,这也许是原子量和分子量的单位一直用“道尔顿”的原因。
但国家标准中规定了应当使用“相对分子质量”来描述分子的相对大小,那么,关于道尔顿(D),在现实中用作“原子质量”或“分子质量”单位时,原来的1D=1u;用作“相对原子质量”或“相对分子质量”单位时,原来的1D=1,即其单位为1。
虽然“道尔顿”属非SI单位即非法定计量单位,但由于历史的原因,鉴于目前科学界尚有大量使用“D”或“kD”的文献存在,在某些类型的论文写作中,作者往往会坚持在某些数据中使用“D”或“kD”。例如在综述类论文中,被引用文献数据中“D”常常不可避免。在这种情况下,有人[6]认为应尊重作者的选择,虽然期刊中会出现“非法的”D,但不应视为“违法”。超级秘书网
5正确运用“相对分子质量”的量符号
既然明确了描述物质分子大小的物理量,在使用“相对分子质量”这一量符号时,很多期刊没有能准确把握,造成了很多错误。在国内免疫学相关的7本杂志以及其他生物学、医学类的杂志,发现在稿约、正文以及SDS-PAGE、Westernblotting等结果图中,“相对分子质量”这一量符号出现了很多种写法,如:Mr、Mr、Mr、Mr以及仍然沿用kD为单位等多种情况。那么,究竟应该如何书写这一量符号呢?根据科技书刊外文字符使用规范[5]197-201:量符号、代表量和变动性数字及坐标轴的下标符号应用斜体;量符号中除表示量和变动性数字及坐标轴的下标字母用正体。根据这一原则,相对分子质量中M是量符号,应用斜体;下标r是relative(相对的)的首字母,不是量符号,也不是代表变动性数字,更不是坐标轴符号,应使用正体。因此,正确的写法是Mr。类似地,相对原子质量的正确写法是Ar。
6结语
生物学和医学类科技期刊是广大科研工作者展示其学术成果的舞台,要科学地将一系列学术成果展现出来,要实现科技期刊的标准化与规范化,就要改变人们长期以来的习惯,需要广大科(下转257页)(上接256页)技期刊编辑担负起科技期刊的社会责任,加强宣传和普及,需要作者和编辑同仁长期不断的共同努力,才能最终得以实现。
参考文献
[1]辞海编辑委员会.辞海:缩印本[M].1979版,上海:上海辞书出版社,1979:274.
[2]原子量[OL].(2008-12-07)[2009-02-12]./view/101827.htm.
[3]分子量[OL].(2008-10-10)[2009-02-12]./view/346251.htm.
[4]陈冠初.生命科学类期刊量和单位的标准化[J].编辑学报,2002,14(2):110.
量子科学应用范文篇3
关键词:智能信息处理技术;量子计算智能导论;教学实践
人类正被数据淹没,却饥渴于知识。面临浩瀚无际而被污染的数据,人们呼唤从数据中来一个去粗取精、去伪存真的技术。而数据挖掘就是从大量数据中识别出有效的、新颖的、潜在有用的,以及最终可理解的知识和模式的高级操作过程,所以数据挖掘也可以说是一个模式识别的过程,因此模式识别领域的许多技术经过一定的改进便可以在数据挖掘中起重要的作用。计算智能(ComputationalIntelligence-CI)方法是传统人工智能(ArtificialIntelligence,AI)的扩展,它是模式识别技术发展的新阶段[1]。
科学家预言:“21世纪,人类将从经典信息时代跨越到量子信息时代”。创立了一个世纪的量子力学随着20世纪90年代与信息科学交叉融合诞生的量子信息学,已成为量子信息时代来临的重要标志[2]。量子计算智能导论作为信息科学、计算机科学、智能信息处理、人工智能等相关专业的研究生专业课程,已经在越来越多的高等学校开设。
由于量子计算智能是一门跨越包括物理学、数学、计算机科学、电子机械、通讯、生理学、进化理论和心理学等学科在内的深奥科学,因此量子计算智能导论的教学内容和侧重点的安排目前仍处在探索阶段,尤其作为研究生课程如何使得学生在掌握深奥理论的基础上结合实际应用,将理论转化为技术与工具,从而提高动手能力,这是每个研究生专业课任课老师的核心探索所在,因此就要求老师在授业解惑的同时关注前沿,以该学科的前沿领域为教学指引,进而更好的培养研究生主动探索知识的能力。
1教材选择
一本好的教材为教学起到了画龙点睛的作用,因此教材的选择即是老师对教学内容,教学目标和教学方法的选择。我们选择教材,期望该教材由浅入深、深入浅出、可读性好,具有系统性、交叉性、前沿性等特点。由于量子计算智能导论为全校研究生的专业课程,而量子计算智能是一门多学科交叉的综合型学科,因此我们要考虑到来自学校不同专业背景,以及在物理,数学,工程优化和进化理论基础有限的两难困境,所以首先选择了一本关于量子计算的英文原版书作为教材之一,MichaelNielsen等人所著的《QuantumComputationandQuantumInformation》[3],2003年高等教育出版社出版,该书全面介绍了量子计算与量子信息学领域的主要思想与技术。到目前为止,该领域的高速进展与学科交叉的特性使得初学者感到困惑而不易对其主要技术与结论有综合性的认识,而该书特色在于对量子机制和计算机科学给予了指导性介绍,使得那些没有物理学或计算机科学背景的学生对此也易于接受,为学生提供了详实的关于量子计算的物理原理和基本概念;另外考虑到这门课程面向研究生,无论将来他们是直接就业还是继续深造,都要注重实践动手能力的培养,要能够将自己所学的书本知识转化为技术和工具,去解决实际的工程和科研问题,因此我们还选择了另外一门书,由李士勇教授所著的《量子计算与量子优化算法》[4],哈尔滨工业大学出版社于2009年出版,该书着重讲解了量子优化算法,为实际工程应用提供了新的思路,并启发大家在量子计算机没有走出实验室的今天,如何利用现有的数字式计算机构造具有量子特性的快速算法。当然考虑到全校研究生的专业知识背景不同,我们也推荐了中南大学蔡自兴教授等编著,2004年由清华大学出版社出版的《人工智能及其应用:研究生用书(第三版)》[5],该书是蔡自兴为主讲教授的国家精品课程人工智能的配套教材,该本书中系统全面的讲解了高级知识推理、分布式人工智能与艾真体、计算智能、进化计算、群智能优化、自然计算、免疫计算以及知识发现和数据挖掘等近年的热点智能方法,从而辅助学生了解人工智能,以及人工智能如何发展到计算智能,使得学生全面认识学科的发展和传承性,为今后学习量子计算智能打下坚实的理论基础。
2教学内容
本课程从量子计算的基本概念和原理出发,重点讲解量子计算基础和基本的量子算法;并从量子优化算法拓展开来。该门课程我们安排了46学时,具体安排如下:第1章,量子力学基础(2学时);第2章,量子计算基础(4学时);第3章,基本量子算法(4学时);第4章,Grover量子搜索算法的改进(4学时);第5章,量子遗传算法(8学时);第6章,量子群智能优化算法(8学时);第7章,量子神经网络模型与算法(8学时);第8章,量子遗传算法在模糊神经控制中的应用(8学时)。
3教学方法
3.1理论与实践相结合的教学方法
量子计算智能导论是一门多学科交叉的综合型学科。选课的同学来自全校,各个的专业背景不同,但是大家的共同需求是一样的,就是从课程中掌握一种用于解决实际问题的工程技术,但是工程技术的掌握也需要理论的支撑,因此我们在教学实践中总结出了一套方法,具体做法是将教学内容划分为:理论型和实践型。
理论型教学指的是发展完善的量子计算基本原理和方法。其内容包括:量子位、量子线路、量子Fourier变换、量子搜索算法和量子计算机的物理实现等。而其中量子位、量子线路以及量子算法都是以量子相对论为基础的,这也是量子计算的本质原理,而较之我们熟悉的数字式计算机和计算方式有着本质的区别。我们在教学中由浅入深,通过PPT授课,采取理论与实例相结合的讲授方式。下面给出了一个我们在教学中的实例:将量子计算问题形象化。具体内容如下。
让我们想象一下下面这个问题。我们要找一条穿过复杂迷宫的路。每次我们沿着一条路走,很快就会碰到新的岔路。即使知道出去的路,还是容易迷路。换句话说,有一个著名的走迷宫算法就是右手法则――顺着右手边的墙走,直到出去(包括绕过绝路)。这条路也许并不很短,但是至少您不会反复走相同的过道。以计算机术语表述,这条规则也可以称作递归树下行。现在让我们想象另外一种解决方案。站在迷宫入口,释放足够数量的着色气体,以同时充满迷宫的每条过道。让一位合作者站在出口处。当她看到一缕着色气体出来时,就向那些气体粒子询问它们走过的路径。她询问的第一个粒子走过的路径最有可能是穿过迷宫的所有可能路径中最短的一条。当然,气体颗粒绝不会给我们讲述它们的旅行。但是量子算法以一种同我们的方案非常类似的方式运作。即,量子算法先把整个问题空间填满,然后只需费心去问问正确的解决方案(把所有的绝路排除在答案空间以外)。这样以来,一个枯燥晦涩的量子算法就被很形象的解释,因此增强了学生的记忆也加深了理解,从而提高了学生的学习兴趣。
实践型教学指的是正在发展中的量子计算智能方法的热点问题。其内容包括:量子遗传算法,混沌量子免疫算法,量子蚁群算法,量子粒子群算法,量子神经网络模型与算法,和这些算法在实际工程优化中的应用。这部分内容属于本学科的前沿,但也是热点问题,因此这部分我们在教学中忽略理论推导,重点强调实际操作,在PPT课件中增加仿真实例的讲解;并在课下布置相应的上机操作习题,配合上机实践课程,锻炼学生的动手能力,同时也引导学生去关注这些前沿,从而培养他们的科研素养。
为了体现该门课的教学特点,我们在考核方式上,采取考试与报告相结合的方式,其中理论部分我们采取闭卷考试,占总考评分数的40%;实践部分采取上机技术报告考核,内容为上机实践课程布置的大作业,给出详实的算法流程图和仿真结果与分析,占总考评分数的40%;出勤率占总考评分数的20%。
3.2科研素养的培养与实践能力的提高
科研素养的最核心部分,就是一个人对待科研情感态度和价值观,科研素养的培养不仅使学生获得知识和技能,更重要的是使其获得科学思想、科学精神和科学方法的熏陶和培养。正如温总理说的那样:“教是为了不教,学是为了会学”,当学生将课本内容遗忘后,遗留下来的东西即是他们所具备的科研素养。因此,在教学中,我们的宗旨也是提高学生的科研素养,量子计算智能导论是一门理论和实践紧密结合的学科,该学科的发展日新月异,在信息处理领域的关注度也越来越高。在教学实践中,我们采用了上机实践和技术报告相结合的教学方式。掌握各种量子计算智能方法的原理和流程是这门课程教学的首要任务,因此学生结合各自研究方向实现量子智能算法在实际科研任务中的优化问题求解。在上机实践中,学生不仅要掌握该智能算法的流程而且重点关注学生对
自己科研任务的建模,学会系统分析问题,建立合理的数学模型,并给出理论分析。上机实践验收中,我们不但考察其结果展示,更增加了上机实践的技术报告,用来分析模型建立的合理性,从而培养学生对待科研问题的分析素养和建模素养。在技术报告中,我们要求学生给出几种可供参考的建模模型,并分析各自的优势,和选择这一解决方案的依据。由于量子计算智能导论是面向研究生开设的课程,在教学中,我们更佳关注其分析问题的能力,和解决问题的合理性的思考能力,从而培养学生的科研素养。
4结语
把教学当做一门艺术,是我们作为高校老师毕生追求的目标,如何做到重点讲透,难点讲通,要点讲清,这也是我们多年教学中一直关注的关键点。我们在教学中反对“灌输式”,强调“启发式”,以实际应用先导教学是非常可取的,也收到了良好的效果。量子计算智能导论是一门综合型交叉学科,且面向研究生开设,因此在教学实践中,我们十分重视学生科研素养的培养。通过上机实践和技术报告的形式引导学生积极动手,积极思考。希望这些教学中的点滴供同行们交流探讨。
参考文献:
[1]焦李成,刘芳,缑水平,等.智能数据挖掘与知识发现[M].西安:西安电子科技大学出版社,2006.
[2]田新华.跟踪国际学术前沿迎接量子信息时代:《量子计算与量子优化算法》评介[J].科技导报,2010,28(6):122.
[3]MichaelA.Nielsen,IsaacL.Chuang.QuantumComputationandQuantumInformation[M].北京:高等教育出版社,2003.
[4]李士勇,李盼池.量子计算与量子优化算法[M].哈尔滨:哈尔滨工业大学出版社,2009.
[5]蔡自兴,徐光v.人工智能及其应用:研究生用书[M].3版.北京:清华大学出版社,2004.
ExplorationonIntroductiontoQuantumComputationalIntelligence
LIYangyang,SHANGRonghua,JIAOLicheng
(SchoolofElectronicEngineering,XidianUniversity,Xi’an710071,China)
-
量子化学论文范例(3篇)
量子化学论文范文【关键词】玻尔理论;质变;量变;连续性;能量状态量变和质变是事物发展的两种状态,量变是指事物量的规定性的变化,是事物数量的增减、场所的变更以及事物内部各个..
-
量子化学基础范例(3篇)
量子化学基础范文篇1人口变化;基础教育;影响对策【关键词】中图分类号:G40文献标识码:A文章编号:1005-5843(2015)06-0051-03进入21世纪以来,随着世界经济一体化发展,传统生产要素对..
-
如何进行探究式教学范例(3篇)
如何进行探究式教学范文篇1关键词:教学目标;探究式问题;探究情景创设教学作为对学生学习能力和品质培养的重要手段,教学目标的设定,探究式问题的设置,教学情景的创造直接影响到整..
-
人工智能仿真技术范例(3篇)
人工智能仿真技术范文篇1关键词:智能建筑弱电系统;实践教学;案例教学;模拟仿真;项目教学中图分类号:G642.4文献标志码:A文章编号:1674-9324(2012)07-0025-02一、引言建筑智能化弱电系..
-
病虫防治的主要措施范例(3篇)
病虫防治的主要措施范文强化病情虫情监测预报针对粘虫迁飞性、隐蔽性和突发性、暴食性强特点,各级农业部门要密切关注气候变化和粘虫迁飞动态,以及本地粘虫成虫、幼虫发生发..
-
研究性学习活动形式范例(3篇)
研究性学习活动形式范文篇1语文是研究性学习中的一项重要内容,如何开展语文学科的研究性学习,是一个尚待开发的新领域,本文就这一问题作一个探讨。一、学生角色:从被动到主动近..
-
小学科学探究式教学策略范例(3篇)
小学科学探究式教学策略范文【关键词】小学科学;生活化;策略生活化教学的策略可以把抽象的科学知识融入生活中的因素,从而使科学知识具有生活化特点,小学生学习具有生活化特点..
-
教学媒体的特点范例(3篇)
教学媒体的特点范文关键词:多媒体教学;小学高年级;语文教学新课程改革要求教师采用灵活多样的教学方式,使用多媒体教学是教师优化教学的一种重要方式。多媒体可以提供形象生动..