比的意义教学设计及反思(精选8篇)

daniel 0 2023-12-02

比的意义教学设计及反思篇1

教学内容:

人教版小学数学教材六年级上册P48-P49内容。

教学目标:

1.在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。

2.经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。

3.在自主学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。

教学重点:

理解比的意义以及比与分数、除法之间的关系。

教学难点:

理解比与分数、除法之间的关系,明确比与比值的区别。

教学准备:

课件,学具。

教学过程:

一、创设情境,揭示课题

1.课件出示:20xx年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。

教师提问:这就是杨利伟展示的两面旗,它们的长都是15cm,宽都是10cm。比较它们长和宽的关系,你能提出怎样的数学问题?

预设情况:

(1)长比宽多多少厘米?15—10;

(2)宽比长少多少厘米?15—10;

(3)长是宽的多少倍?15÷10;

(4)宽是长的几分之几?10÷15。

2.揭题:今天我们将进一步研究这种倍数关系,它除了用除法表示外,还可以用一种新的数学方法──“比”来表示。(板书课题:比的意义)

【设计意图】利用“神舟”五号升空这一现实素材自然地引出“比”,一方面激发学生的学习兴趣,感受数学与生活的密切联系;另一方面可适时对学生进行爱国主义教育。

二、探究新知,理解比的意义

(一)同类量的比

师:刚才我们用“15÷10”表示长是宽的多少倍,可以说成长和宽的比是15比10,记作15:10。那么,10÷15表示宽是长的几分之几,怎样用比表示它们的关系呢?(可以说成宽和长的比是10比15,记作10:15。)

师:想一想15比10和10比15一样吗?它们有什么不同?(引导学生理解比的前项、后项所表示的意义不同。)

(二)不同类量的比

课件出示:“神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。那么飞船进入轨道后平均每分钟飞行多少千米?

1.读题理解题意,说说知道了哪些信息?

2.立解答,说清解题思路。(速度可以用“路程÷时间”表示。)

3.尝试用比表示路程和时间的关系。(路程和时间的比是42252比90,记作42252:90。)

(三)比较分析

1.观察比较。

师:观察这三个比,说说它们有什么联系与区别?(引导学生发现这三个比都表示相除的关系,但前两个比中两个量都表示长度,相比的两个量是同类量;第三个比中的两个量,一个表示路程,一个表示时间,是不同类量,不同类量的比可以表示一个新的量。)

师:想一想,路程与时间的比可以表示哪个量?(速度)

2.归纳:什么叫比?(板书:两个数的比表示两个数相除。)

【设计意图】在比较分析中让学生进一步感受“比”和除法的联系,加深对同类量与不同类量比的意义的理解,对比的概念形成较为清晰的认识。

三、自主学习,加深认识

(一)深化理解

1.自学比的相关知识。

学生自学教材第49页“做一做”之前的内容,思考以下问题:比各部分的名称是什么?怎样求一个比的比值?

2.汇报交流。

(1)比各部分的名称。

课件出示:15:10=15÷10=,让学生说出比的各部分名称。(板书:前项、比号、后项、比值。)

(2)比值的意义。

师:怎样求一个比的比值呢?(比的前项除以比的后项所得的商就是比值。)

(3)练习:求出下列各比的比值:

3:5;0.4:0.16;6:8。

师:比和比值有什么区别?(引导学生小结:比表示一种关系,而比值是一个数,通常用分数表示,也可以用小数或整数表示。)

【设计意图】自主学习也是学生探索问题、解决问题的重要途径。教师把学习的主动权交给学生,引导学生在抽象概括出比的意义的.基础上自主学习比的相关知识,促进学生自主探究能力的发展。

(二)沟通联系

1.师:同桌讨论一下,比与除法、分数之间有什么联系?比的前项、后项和比值分别相当于分数和除法算式中的什么?比的后项可以是0吗?

2.请尝试用字母表示比和除法、分数之间的内在联系。

师:根据分数与除法的关系,两个数的比还可以写成分数形式。如15:10也可以写成,仍读作“15比10”。

3.师:足球比赛中的比分3:0与我们今天学习的比一样吗?(引导学生理解:各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,是比较大小的,是相差关系,不是相除关系。)

【设计意图】在讨论交流中,教师引导学生进一步认识比和除法、分数之间的联系与区别,体会数学知识间的内在联系。

四、巩固知识,应用拓展

1.P49“做一做”第1题。

(1)出示课件,让学生根据条件和要求写出比并求出比值。反馈交流时,让学生说说两个相比的量是同类量吗?并说说有什么发现?(发现是同类量的比,这两个比的比值相等。)

(2)提问:小敏所花的钱数和练习本数之比是():(),比值是()。

请学生思考这两个比的量是同类量吗?比值表示什么意思?(所花钱数和练习本数是不同类的量,比值表示单价。)

【设计意图】结合具体情境帮助学生巩固比的概念,为以后学习比例打下基础。

2.P49“做一做”第2题。

学生立完成。反馈时,说说未知的前项或后项是怎样求出的。(引导学生根据比与除法的关系求出未知的前项或后项,归纳一般方法:前项=比值×后项;后项=前项÷比值。)

【设计意图】通过练习,引导学生进一步理解比和除法的关系,学会灵活运用所学知识解决实际问题。

3.练习十一第1题。

(1)请学生立完成,反馈交流时引导学生明确比的前项、后项是有顺序的,前项、后项所表示的量与数据之间必须一一对应;第(3)题请学生说说比值的具体含义是什么。(表示平均每人制作的模型数量。)

(2)提问:你还可以写出哪几个比?说出它们的具体含义。(引导学生说出多个量的比。)

【设计意图】在具体情境中,教师充分挖掘习题资源,引导学生从量与量的关系这一角度去认识比,明确两个量(多个量)的比表示的是它们之间的倍数关系,进一步加深对比的意义的理解,深化对比的认识。

五、回顾总结,交流收获

师:说说这节课我们学习了什么?你有什么收获或问题?

【设计意图】通过回顾,理顺各个知识点,让学生明确学习了什么内容,反思自己知识掌握情况。

比的意义教学设计及反思篇2

教学过程:

一、导入课题。

师:同学们好,这一节课又是我们的数学课,数学,顾名思义,“学习数”,当然,“学习数”并不是我们数学的全部,但是,今天这节课我们就一起来学习数。请同学们告诉老师,我们都学过了哪些数啊?(单数,双数,小数,整数,质数,数,自然然,等等……)

师:对,我们已经学过了这么多数,那么,今天我们一起来学习分数,研究分数的意义。

出示课题(分数的意义)

二、学习新课。

(一)分数的产生。

1、再现旧知识。

师:同学们看,我们有这有两个小朋友正在争论两人该怎么分吃一个饼。同学们,你觉得该怎么分呢?

生:平均分,从中间切开。

师:哦,同学们都说,从中间分开,平均分。老师知道了。这样分。(操作课件分饼)

师:嗯,这个方法真不错,那你能用学过的分数表示每们小朋友分得的份数吗?

生:12(师演示操作。)

师:你能说说这个12它表示什?

生:表示把一个饼平均分成两份,每个小朋友分得其中的一份,就是这个饼的12。

对,在进行分物,测量或者计算时,往往不能正好得到整数的结果,这时常用分数来表示。

2、你还能说出哪些像这样的分数。你能分别指出它们的名称吗?

生:12,24,57……

(二)分数的意义。

1、认识单位“1”。

(1)动手操作:

同学们,我们已经熟悉了分数的各部分名称,现在请你们用不同的方法表示四分之一,看谁做得又快又好。(折一折,或画一画)

(2)展示学生成果。

(3)出示课件,在每一幅图上表示出它的四分之一。(交流,汇报,师在这个过程中,引导学生说出每个分数所表示的意义)

(4)概括总结:

师:刚才同学们在表示四分之一的过程中,有什么发现吗?

学生甲:都是把物体平均分成四份,表示其中的一份。

学生乙:有的是把一个物体看作一个整体,有的是把一些物体看作一个整体,把这个整体平均分成四分,每份是这个整体的四分之一。

师:对,一个实物好理解,但是有的是由几个单个的物体组成的,我们可以把它看作一个整体。一个物体,一些物体都可以看作一个整体,一个整体可以用自然数“1”来表示,通常把它叫做单位“1”。

(5)像这样的整体,你还能举出一些例子吗?(一筐鸡蛋,一堆煤,一个年级的人数,一些桃子,一个年级的人数………………)

师:也就是说,单位“1”可以表示一个物体,也可以表示一些物体,它可以很大也可以很少,可以很多也可以很少。

(6)把单位“1”平均分成若干份,表示这样一份或几份的数,叫分数。(强调平均分)

2、学习分数单位:

(1)出示课件:师引导学生填一填。

(2)说说,这些分数分别表示什么意思。

(3)分数单位的意义。

把单位“1”平均分成若干份,表示这样一份的数就是分数的分数单位。

(4)分数单位的.特点。

A、都是几分之一。为什么:分数单位是把单位1平均分成若干份,表示这样的一份的数就是分数单位。

B、分数是由分数单位组成的,因为不同分母的分数,把单位“1”平均分成的份数不一样,所以不同分母的分数有不同的分数单位。

三、课堂作业设计。

四、总结。

同学们,我们今天学习了什么呀?你学会了吗?

以上是比的意义教学设计及反思的相关内容,希望对你有所帮助。另外,今天的内容就分享到这里了,想要了解更多的朋友可以多多关注本站。

比的意义教学设计及反思篇3

教学目标:

1、理解比的意义,会读、写比;认识比的各部分名称;掌握求比值的方法,能准确地求出比值。

2、理解比、分数、除法之间的关系,通过观察,让学生懂得事物之间是相互联系的。

教学重点和难点:

掌握比的意义,建立比的概念,能准确地求出比值。

教学过程:

老师:在日常生活中,我们常常把两个数量进行比较,通常怎么比较?(比较两个数量之间相差关系用减法,比较两个数量之间的倍数关系用除法。)

导入:今天我们借助于除法来学习两个数量进行比较的另一种表示方法。

(一)准备题

(事先板书)口头列式解答。

1、一面红旗,长3分米,宽2分米,长是宽的几倍?宽是长的几分之几?

2、一辆汽车,2小时行驶100千米,每小时行驶多少千米?

板书:1002=50(千米)

师:观察上面的两道题,它们有什么共同特点?(都用除法)

(二)讲授新课:比的意义

1、观察练习1。

问:32表示什么?(3是2的几倍。)

谁和谁比?(长和宽比。)

23表示什么?(2是3的几分之几。)

谁和谁比?(宽和长比。)

师:无论是长除以宽,还是宽除以长,比较结果都表示长和宽之间的倍数关系,这时也可以把两个数量之间的关系说成是两个数量的比。

板书:长和宽的比是3比2。宽和长的比是2比3。

也就是说,32可以说成3比2,23也可以说成2比3。

提问:3分米、2分米都表示什么?(长度)

师小结:3分米、2分米都表示长度,它们是同一种量,我们就说这两个数量的比是同类量的比。

2、观察练习2。

提问:求的是什么?(速度)谁和谁进行比较?(路程和时间)谁除以谁?

师:我们也可以用比来表示路程和时间的关系。(放手让学生讨论)路程除以时间可以说成什么?(可以说成路程和时间的比,即100∶2可以说成100比2。)

路程和时间是同一类量吗?(不是)不同类量比的结果是什么?(产生一个新的量:速度。)

3、归纳总结。

师:从上面例子可以看出,表示两个数之间的关系可以用什么方法?(用红笔画线,标上除法。)当用除法表示两个数量关系时,我们又可以说成什么?(用红笔画线,标上比。)什么叫做比?(学生讨论后,老师归纳并板书。)

板书:两个数相除又叫做这两个数的比。

4、练一练。(投影)

(1)书法小组有男生6人,女生5人,男女生人数的比是()比(),女生人数和男生人数的比是()比()。

(2)小红3小时走11千米,小红所行路程和时间的比是()比(),这个比表示()。

提问:写比时要注意什么?(要看清谁比谁,按顺序写。)不按顺序写会出现什么结果?(改变比的意义。)

(三)比的写法和各部分名称

师:两个数相除又叫做两个数的比,说法变了,各部分名称和表现形式都应发生变化。(可让学生看书自学,老师根据学生的回答板书。)

3比2记作3∶2

2比3记作2∶3

100比5记作100∶5

∶叫做比号,读做比。比号前面的数叫做比的前项,比号后面的数叫做比的后项。用比的前项除以比的后项,所得的商叫做比值。

提问:比的前后两项能随便交换位置吗?为什么?(交换了位置,比的意义就变了。)

比值可以是哪些数?(分数、小数、整数)

练习:你会求比值吗?(板书)

100∶2=1002=50

(老师说明:求比值和解答应用题不同,不写单位名称。)

(四)比、除法、分数之间的关系

师:两个数相除又叫做两个数的比,比和除法到底有什么关系?

学生讨论,老师出示投影。

生:比的前项相当于除法中的被除数,比号相当于除号,比的后项相当于除数,比值相当于商。

师:为什么要用相当于这个词?因为它们之间有联系还有区别,除法是一种运算,比则表示两个数之间相除的关系,所以比同除法的关系只能是相当于的关系。

提问:在除法中,为了使除法有意义,提出了什么要求?(除数不能是0。)那比的后项可以是零吗?(不可以)

师:比还有一种表示方法,就是写成分数形式。(板书)3∶2可写成

成比值又可以看成比,做比时读作2比3,做比值读作三分之二。其它几个比做比值时必须化成带分数或整数。

提问:比和分数有什么关系?

生:比的前项相当于分子,比号相当于分数线,比的后项相当于分母,比值相当于分数值。(老师按学生回答,填写投影片)

师:分数是一个数,所以比同分数也是相当于的关系。

(五)反馈练习

1、第56页的做一做,学生动笔在本上做。

2、(投影)把下面的比写成分数形式。

3、选择答案。

航空模型小组8个人共做了27个航空模型,这个小组所做的模型总数和人数的比是

4、判断正误:(举反馈牌)

(1)大卡车载重量是5吨,小卡车载重量是2吨,大小卡车载重量的

(2)机床上有一个齿轮,20秒转49周,这个齿轮转动的周数和时间的比是20∶49。

师:写比要注意比的顺序,前、后项不能颠倒。

(六)课堂总结

今天我们学习的是书上第55页至56页的知识。(让学生打开书看)你都学会了哪些知识?

(七)布置作业

(略)

比的意义教学设计及反思篇4

教学内容

人教版教材第33-34页比例的意义和基本性质。

教学目标

1、理解比例的意义,认识比例各部分的名称。

2、能运用比例的意义判断两个比能否组成比例,并会组比例。

3、理解并会应用比例的基本性质。

教学过程

一、情境导入,复习比的知识

教师出示课件,结合画面引入。

师:同学们请看,这是们祖国各地的风景图片,我们的祖国幅员非常辽阔,却能在一张小小的地图上清晰可见各地位置;科学家在研究很小很小的生物细胞时,想清楚地看见细胞各部分,就要借助显微镜将细胞按比例放大。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

教师板书课题:比例的意义和基本性质。

师:说到比例,我们很容易想起前面学过??(教师拖长声音)

生:比(几乎异口同声地)

师:下面就请同学们完成学案的“课前检测”部分,复习一下比的有关知识。

[设计意图:借助现代电教媒体,用形象、直观的图片,来激发学生的求知欲望,同时也培养了学生爱祖国、爱科学的情感。]

二、自主探究,学习比例的意义

1、探求共性,概括意义

师:刚才第三题10:6与4.5:2.7的比值有何特点?

生1:我发现这两个比的比值相等。师:既然这两个比的比值相等,请你想想用什么符号把这种关系表示出来!

生2:用等号。(师把左右两个中间板书=)

师:同学们现在用了等号表示出这样一个式子,这是一个新的表达式,你能给它起个名字吗?

生:比例(有几个学生低声说)

师:这几位同学很聪明,数学上也起名为“比例”(师板书:比例)

师:你现在想知道什么叫比例吗?

生:想(学生声音响亮,愿望强烈)

师:那就请同学们自学课本32-33页做一做之前的内容,并完成学案上自学引导部分的问题。(5分钟后多数学生停了笔,教师在学生的回答过程中板书比例的概念,并引导学生把文字语言转化成数学符号语言,得出比例的两种表达式:a:b=c:d或=(b、d不能为0)

2、根据意义,判断比例

师:刚刚我们认识了新的式子比例,要是让你来判断两个比是不是能组成比例,你会怎么办?

生:看比值是不是相等

师出示课件:下面哪组中的两个比可以组成比例?把组成的比例写出来.(1)6∶10和9∶15(2)20∶5和1∶4

师:比一比看谁说的又快又好!

生1:因为6∶10=0.6

9∶15=0.6

所以6∶10=9∶15

生2:因为20∶5=4

1∶4=0.25

所以20∶5和1∶4不能组成比例.(学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)

师:请同学们自己独立完成学案上的课堂训练

(一)第1题。(再次巩固判断两个比是否成比例的方法,并熟练解题思路。)

[设计意图:从学生熟悉的比入手教学,充分重视了学生原有的认知基础,找准了新知识的生长点。然后放手让学生自学,让学生亲自经历知识的发生、发展过程,充分发挥了学生的主体作用。]

三、合作探究,学习比例的基本性质

1、组织看书,认识名称

师:a:b里比号前面的a叫——(生齐答:前项)比号后面的b叫——(生齐答:后项)。那么在比例里的各部分有哪些名称呢?请同学自学课本,并汇报。然后完成学案上的课堂训练

(一)第2题进行巩固。

2、活动探究,总结性质

小组活动内容:

①观察比例的两个内项与两个外项,算一算,你发现了什么。

②如果把比例写成分数形式,是否也有上面发现的规律?

③是不是每一个比例的两个外项与两个内项都具有这种规律,请你再找几个比例进行验证。

④通过以上研究,你发现了什么?(5分钟后,学生基本停止了讨论。)

师:请汇报你发现的规律。

生1:两个外项的积等于两个内项的积

生2:不对,老师,我有个反例:0:1=1:00×0=0,1×1=1,所以??

还没等生2说完,生3迫不及待:不对,比的后项不能为0的,你这个不是比例。

生2:那我0:1=0:2(很着急的改了)

生4:那0×2=0,1×0=0,还是两个外项积等于两个内项积。

师:同学们验证得非常认真,现在我们可以一致公认——(生齐答:任何一个比例里,两个外项的积等于两个内项的积。)

师:和比的基本性质一样,我们把这种性质叫做比例的——(生齐答:比例的基本性质。)(板书:基本性质)

3、应用性质,自主判断

师:刚才我们应用比例的基本性质解决了这两个问题(课件展示刚才的问题:下面哪组中的两个比可以组成比例?把组成的比例写出来(1)6∶10和9∶15(2)20∶5和1∶4)

师:学过比例的基本性质后,你有新的方法解决这个问题吗?不一会,就有学生举起了小手。

生1:第(1)题,只要算一下6×15=90,10×9=90,乘积相等,所以能组成比例.

生2:第(2)题,20×4=80,5×1=5,乘积不相等,所以不能组成比例.

师:很好!同学们发现了一种新的判断两个比是否成比例的方法,现在请大家用你发现的方法完成学案课堂训练

(二)。

4、总结方法,辨析概念

师:我们学了比例的意义和基本性质后,你有几种方法判断两个比能否组成比例?

生:两种,一种是利用比例的意义,通过计算两个比的比值来判断;另一种是利用比例的基本性质,通过计算能够构成内项与外项的两个数的积是否相等来判断。

师:(惊喜!)这节课我们一直类比着比学习比例,比与比例仅一字只差,它们会有什么区别呢?

生1:比是两个数相除,是一个算式;比例是两个比相等,是一个等式

生2:比有两项,比例有四项。

生3:比与比例各部分的名称不同,比的项分别叫做前项和后项;比例的四项,有两个叫做外项,有两个叫做内项。

师:同学们的概括能力很强,你们真的很棒!

师:把你们回答的内容总结一下,边说边展示课件:从意义上、项数上进行对比:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。[设计意图:以上比例基本性质的教学,把知识的探究过程留给了学生。问题让学生去发现,共性让学生去探索,充分尊重学生主体。将学习内容“大板块”交给学生,体现了学习的自主性和主动性,有利于探究和创新意识的培养。同时小组共同探讨有助于培养学生的合作意识。]

四、灵活运用,大显身手

师:以上就是我们这节课学习的内容,大家想要知道自己掌握的情况,请认真完成学案灵活运用与拓展天地的部分。

[设计意图:这一部分设计了活用知识点与拓展天地两个部分,其中活用知识点侧重于考察基础知识、而拓展天地则侧重于培养学生的发散思维。拓展天地的这个问题要想写出全部的八个比例式,需要综合运用比例的意义与基本性质,难度比较大,而教师的教学设计就是要善于把学生已有的知识引向纵深,并以此为载体促进学生能力的提高。]

五、归纳小结,交流收获

师:同学们,通过本堂课的学习,你有什么收获,还有什么疑问?

[设计意图:培养学生反思自己学习过程的意识,有利于学生掌握、巩固新知,并促使学生能深入思考和探索。

比的意义教学设计及反思篇5

教学内容:

人教版课标教材六年级上

教学目标:

1.理解比的意义,知道比是表示两个数之间的.一种关系。

2.会读比、写比、知道比的各个部分名称。

3.渗透“变与不变”的函数思想。

教学重点:

理解比的意义,知道比是表示两个数之间的一种关系。

教学难点:

沟通比与倍数、分数(百分数)、除法之间的内在联系。

教学过程:

一、初步理解比是一种关系

1、引入比。

(1)问题:一个摸球游戏,在盒子里要放黄球和红球两种球,要求黄球和红球按4比1,应该怎么放?

方案1:黄球4个,红球1个。

方案2:黄球8个,红球2个。

讨论:8个对2个应该是8:2,为什么也可以说成4:1,你能说明理由吗?

学生立思考。交流:1个看作1份,4个就是4份,2个红球也可以看作1份,黄球有这样的4份,所以是4:1。黄球个数是红球个数的4倍。

方案3:红球12个、白球3个;红球16个、白球4个;……

讨论:为什么这些方法都是4:1?

(2)红球和黄球的比呢?

(3)小结:黄球个数除以红球个数等于4,黄球除以红球等于1/4。两个数的比其实就是两个数相除,4:1就是4除以1,1:4就是1除以4。

2、认识比的各个部分的名称。

中间象冒号的叫做“比号”,前面的数叫做比的“前项”,后面叫做比的“后项”。

二、进一步认识比的意义

1、出示羊毛衫图。

(1)讨论:从这个2:3中,你可以得到哪些信息?

交流:兔毛是羊毛的2/3;羊毛是兔毛的1.5倍;兔毛是这件衣服的2/5。羊毛是这件衣服的3/5。……

(2)2:3是羊毛和兔毛的比,那么,3:2是谁和谁的比?

2、出示新生儿图。

(1)讨论:这里的1:4是什么意思?

交流:1:4是指新生儿的头长是身长的1/4,身长是头长的4倍。

(2)如果新生儿的头长是10厘米,那么身长是多少?头长是15厘米呢?新生儿的头长是1米呢?

说明新生儿的头长是有一定范围的。一般新生儿的身高在40到60之间。

(3)讨论:(指名以为学生)这位学生的头长与身长的比是:4吗?那么你估计大概是多呢?也就是说这个1:4是特指新生儿的。

3、举例。

三、完善比的意义

1、出示:我坐飞机从杭州出发到成都,飞行的路程大约上1800千米,大约飞行了3小时。

(1)你看出了什么?

交流:飞机飞行的速度是1800÷3=600千米/小时。

1800:3,这是路程和时间的比。

(2)我们以前学的路程除以时间等于速度,其实就是路程和时间的比,结果就是速度。我们称它为“比值”,这里的600千米就是这个比的比值。

2、出示:嘉兴的特产是五方斋的粽子,花20元可以买4个。

讨论:你看到比了吗?

交流:总价和单价的比是20:4=5元/个。这里的比值就是单价。

四、总结提升

1、总结

(1)今天我们研究了什么?说说什么是比?

(2)比和我们以前学习的很多知识有联系,你能说说吗?

2、应用。(机动)

(1)出示:地球储水量中,淡水与海水的比是4:141。

从杭州坐火车到成都,路程约是2480千米,需要行驶41小时。

今年流行16:9的宽频数字电视。

最新统计显示:我们在新生的婴儿中,男女人数的比约为119:100。

(2)说说你看懂了什么意思?

比的意义教学设计及反思篇6

一、教学目标

1、知识与技能:理解比的意义,会读写比;认识比的各部分名称;掌握求比值的方法,能准确的求出比值;理解比、分数、除法之间的联系和区别。

2、过程与方法:通过观察和思考,理解数学知识之间是相互联系的,体会变中有不变的思想。

3、情感态度价值观:感受数学与生活的联系,提高对数学的兴趣。

二、教学重难点

1、教学重点:理解比的意义。

2、教学难点:理解比和分数、除法之间的关系。

三、教学过程

(一)引入新课

展示这样两个问题。

1.六(一)班有男生25人,女生20人。男生人数是女生人数的几倍?女生人数是男生人数的几分之几?

2.甲地到乙地的路程是160km,汽车行驶100分钟可以到达,汽车行驶的速度是多少?

(二)探索新知

播放“天宫一号”发射过程视频。出示教材情境图:杨利伟在飞船内展示国旗

提问:这面国旗就是杨利伟叔叔展示的国旗,长15cm,宽10cm。比较这面国旗长和宽的关系,你会提出怎样的问题?

预设1:长比宽多几厘米?宽比长少几厘米?15-10=5(cm)

预设2:长是宽的几倍?15÷10

预设3:宽是长的几分之几?10÷15

追问1:刚才我们用15÷10来表示长是宽的几倍,我们又可以把它们之间的关系说成长和宽的比是15比10。请同学们想一想,10÷15表示宽是长的几分之几又可以怎么说?

追问2:15比10和10比15一样吗?能随便调换两个数字的顺序吗?

介绍“神州”五号进入运行轨道后,在距地350km的高空做圆周运动,平均90分钟绕地球一周,大约运行42252km。那么飞船进入轨道后平均每分钟飞行多少千米?引导学生用比来表示。

提问:比较上面两个例子,有什么相同点和不同点?让学生以小组为单位进行探究。

预设:相同点,都用除法,又都能说成几比几。

不同点,第一个例子中的比是同类量的比,第二个例子中的比是不同类量的比,不同类量的比得到的是一种新的量如路程和时间的比表示的是速度。

同桌交流:谁能归纳一下,两个数的比表示什么意思?

师生共同总结:比的概念以及各项的名称,什么是比值以及如何求比值。

在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

比值通常用分数表示,也可以用小数或整数表示。

提问:大家现在对“比”已经有了一定的了解,谁能举几个生活中的“比”的例子?

(屏幕出示足球比赛场景图片,比分为2:0)

追问:这是比分,这里的2:0是什么意思?你们觉得这个“比”想说明的意思和我们今天学的“比”一样吗?

总结:这个2:0本身就提醒了我们它不是表示相除关系的,哪里提醒我们了?

引导学生发现比的后项相当于除法中的除数,分数中的分母,不能为0。

追问:比的后项相当于除法中的除数、分数中的分母,那前项呢?比号呢?

共同总结除法、分数、比三者之间的关系。

(三)课堂练习

1.小敏和小亮在文具店买同样的练习本。小敏买了6本,共花了1.8元。小亮买了8本,共花了2.4元。小敏和小亮的练习本数之比是():(),比值是();花的钱数之比是():(),比值是()。

2.3:()=24():8=0.5

(四)小结作业

提问:今天有什么收获?

课后作业:课后相应练习题。

四、板书设计

比的意义教学设计及反思篇7

教学目标

1.从生活实际出发感知和理解百分数的意义;

2.掌握百分数的写法,明确百分数与分数在意义上的区别;

3.组织和引导学生经历学习过程,培养学生的问题意识及合作、交流能力和自学能力。

教学重点:百分数意义的理解

教学难点:百分数与分数在意义上的区别

教学准备:.师生共同搜集身边或日常生活中的百分数。

2.教师制作多媒体课件。

教学形式:学生自主学习与小组合作、交流相结合,教师组织、引导与师生互动、交流相结合。

教学过程:

一、信息发布,感知百分数

(一)教师发布信息。以声音、图片、文字结合的方式,出示下列信息(见课件)谈话:我们虽然已经认识了许多的数,但,像18%,25%,37.3%,7%,22%,70%这样的数,仍需要我们来认识和了解。人们称这样的.数为百分数(板书:百分数)

(二)学生发布信息

师:生活中,你们见过这样的数(百分数)吗?在哪儿见过的?请说来听听。信息交流分两步进行,

1.分小组交流。

2.每组推荐一人在班上交流。

(三)小结。同学们真了不起,从生活中找到了这么多百分数。

二、质疑问难,明确学习目标

师:百分数在生活中的应用这么广泛,请问:同学们想知道有关百分数的哪些知识呢?

此时,教师要肯定学生提出的每个问题,并及时地在黑板上作简要的记录(如意义,读,写等)

当学生谈不到分数与百分数的区别时,教师便质疑:人们为什么不用分数来表示这些关系,而大量地使用百分数?难道百分数与分数不同吗?(板书:百分数与分数有什么不同?)

三、自学释疑,达成共识

(一)学生自学(课件出示要解决的问题)

(二)分小组交流自学情况

师:通过自学,你明白了哪个或哪几个问题?自己是怎么理解的?请同学们在组长的组织下进行交流。

教师了解、指导学生解决问题,为释疑做准备。

(三)师生释疑、解难

1.组长汇报本组同学自学、交流和解决问题的情况。

提示:一个组选取一个问题来重点汇报,主要介绍你们组是怎么理解的?

汇报时,教师还要提醒:其余同学注意倾听,并准备针对别人的发言发表自己的见解。

2.针对组长汇报,引领或指导学生以教材为依托把一个一个的问题加以理解(做到不流于形式,不规定学生必须先回答什么问题,再回答什么问题。)

人们为什么喜欢百分数?

引导学生从教材中的实例出发去领会——将分母统一为100便于比较的道理。

关于百分数的意义

引导学生从教材中的实例入手,逐步感受——百分数是把“一个数是另一个数的几分之几”中的“几分之几”转化成“百分之几”的一种特殊表达方式。即,百分数是“分率”中的一种特殊情形。所以,百分数也叫百分率或百分比,其意义是——表示一个数是另一个数的百分之几。同时,辅以练习。

[练习]

说一说,自己搜集信息中百分数的意义。

教师指导:将百分数的意义叙述成“……是……的百分之几”的形式

关于百分数的写法

先抽取几名学生从自己搜集来的百分数中各选取一个自己最喜欢的写在黑板上,其余学生注意观察他们的写法;再师生互评,并谈自己搜集时的写法是否正确,从而规范写法。关于百分数与分数在意义上的区别

先让学生谈一谈,当学生谈不到或谈不清楚时,教师再组织学生讨论。

比的意义教学设计及反思篇8

教学目标:

1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,理解单位“1”知道分子、分母和分数单位的含义。

2、经历认识分数意义的过程,培养学生的抽象、概括能力。

3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力。

教学重点:

理解和掌握分数的意义,理解单位“1”的含义。

教学难点:

对单位“1”的理解。

教具和学具:

米尺、长方形白纸、圆形纸片、一米长的绳子、操作练习纸。

教学过程:

一、创设情景,温故引新。

1、出示1/4

师:认识吗?关于1/4你都知道些什么?

生:把一个物体平均分成4份,取其中的1份就用1/4表示。

生:4是分母,1是分子

生:它是一个分数。

师:同学们说的很好,那你们知道分数是怎样产生的吗?

二、教学分数的产生。

1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?

2、在古代,人们就已经遇到了这样的问题。(师讲解古人测量的情况)。课件呈现情境图,

3、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平均分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?

4、总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示—这就产生了分数。(板书:分数的产生)

三、教学分数的意义。

1、动手操作,探索新知。

(1)操作。

师:看来同学们对分数已经有了一些初步的了解,课前老师给每一个小组都提供了四种材料,一张正方形纸、1分米长的线段、4个苹果、8只熊猫。

下面以小组为单位,根据这几种材料,通过折一折、画一画、分一分等方法,表示出1/4学生动手操作,教师巡视。

(2)交流

师:老师看到每个小组都根据这几种材料表示出了1/4谁愿意来展示一下?

让学生在实物投影仪前向大家展示自己的操作方法及成果

生:把一个正方形平均分成4份取其中的一份就是这个正方形的。

把1分米长的线段平均分成4份取其中的一份就是这条线段的。

把4个苹果平均分成4份取其中的一份就是这些苹果的。把8只熊猫平均分成4份取其中的一份就是这8只熊猫的。

(3)认识单位“1”。

师:同学们,我们利用那么多方式表示出来了1/4,那请大家回忆一下,在表示的过程中,有没有相同的地方?

生:都是把物体平均分成4份,表示其中的一份,就是1/4

(师板书:平均分成4份,表示其中的一份就是1/4)

师:在表示的过程中,有什么不同的地方吗?

生:分的东西不一样。

师:我们刚才是把哪些东西平均分的?

生:一张正方形纸、1分米长的线段、4个苹果、8只熊猫

师:象把一个正方形平均分,我们可以称之为把一个物体平均分

(课件显示:一个物体)

把一分米长的线段平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)

把4个苹果、8只熊猫平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)

师:同学们请看,象这样的一个物体、一个计量单位、一些物体都可以看作一个整体,这个整体我们可以用自然数“1”来表示,通常把它叫做单位“1”,(因为它可以表示一个整体,而不是一个具体的数,和自然数1不同,所以要加引号)

师:单位“1”到底指哪些?

生:一个物体,一个计量单位,一些物体。

师:很好,那么一个物体除了一个正方形外,还可以是什么?

生:一个苹果,一个面包……

师:一个计量单位还可以是什么?

生:xxx

师:一些物体还可以是什么?

生:3只老虎、4个面包、8个人……

单位“1”很奇妙,它可以表示我们班的一个同学,也可以表示全校同学,还可以……。它可以表示很大很大,大到宇宙万物;也可以表示很小很小,小到一粒微尘。

(4)、揭示分数的概念

1、师:一个物体,一个计量单位,一些物体可以用单位“1”表示,那么刚才在表示1/4的时候,我们实际上是把谁平均分成4份,表示其中的一份。

生:把单位“1”平均分成4份,表示其中的一份,用1/4表示。

师:剩下的部分,用哪个数表示呢?

生:3/4

师:3/4表示什么呢?

生:把单位“1”平均分成4份,表示其中的3份,用3/4表示.师:如果老师把单位“1”平均分成12份,表示其中的7份,用哪个分数表示?

生:7/12

师:像这样的分数,你还能说出来吗?

学生说:2/63/5…..并说出表示什么?

师:刚才我们说了那么多分数,那么到底什么是分数,你能用一句话概括一下吗?

小组交流。

指名说(多找几个学生说)。

揭示概念(板书:把单位“1”平均分成若干份,表示这样的一份或几份都可以用分数来表示。)

5、强化理解概念

①、齐读概念

②谁能说说下面分数的含义?(课件出示练习)

6、理解分子分母的意义。

师:通过刚才的学习,大家知道了分数的意义,请同学们观察这些分数的分母,有的是4、有的是12、有的是6等,分母表示什么呢?

生:分母表示把单位“1”平均分的份数。

师:分子表示什么?(分子,表示取的份数)

四、教学分数单位。

师:整数中有计数单位个、

十、百、千、万、分数是否也有计数单位呢?它的计数单位又是怎样规定的?请同学们打开课本自学。

显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,请任意说出一个分数考考你的同桌,说出这个分数的意义和分数单位。)

五、巩固练习、深化提高。

1、师:刚才同学们积极动脑,认真思考,学习了分数的有关知识。下面我们一起做个小游戏,看谁最善于动脑思考。老师手中有九个糖果,现在我要把这些糖果分给我们班的同学,谁想要?有要求:我说分数,你来拿糖,说对了才能把糖果拿走,谁想来?(学生上台拿,并及时鼓励)

师:请拿走这些糖果的三分之一,说一说你是怎样拿的?她拿的对不对?还剩几颗?(六颗),再请一个同学,请你拿走剩下糖果的三分之一,(两颗),咦,为什么都是三分之一,而俩人拿的糖果不一样多呢?(生:因为总数不一样。)

师:虽然取的份数相同,但单位“1”不同,得到的数量也不相同。

师:还剩4颗,谁还想要?请你拿走二分之一,她拿走了几颗?(2颗),为什么他拿走的是三分之一,而他拿走的是二分之一,却都是2颗呢?(生:单位“1”不同)师:也就是说单位“1”不同,分成的份数不同,得到的数量也可能是相同的。

师:最后还剩下2颗,老师这里不仅仅只有两颗,还有很多,老师要请同学们来猜一猜,这两颗糖果是老师现在所有糖果的九分之一,请问,老师现在一共有多少颗糖果?

师:同学们玩完了这个游戏,是不是轻松多了,下面老师要考考你们了,有没有信心全部通过?出示题目。

2、练习十一的第1、2、3、4题

六、课堂总结。

今天这节课我们学习了什么?你有哪些收获?

  • 下一篇:医院年度总结,医院年度总结表彰会主持词(整理5篇 )
    上一篇:坚持和完善一国两制推进祖国统一心得体会集合(精选4篇)
    相关文章