一元一次方程教案人教版教学设计(精选8篇)
一元一次方程教案人教版教学设计篇1
教学目的
1.使学生会进行简单的公式变形。
教学分析
重点:含字母系数的一元一次方程的解法。
难点:含字母系数的一元一次方程的解法及公式变形。
教学过程
一、复习
1.试述一元一次方程的意义及解一元一次方程的步骤。
2.什么叫分式?分式有意义的条件是什么?
二、新授
1.公式变形
引例:汽车的行驶速度是v(千米/小时),行驶的时间是t(小时),那么汽车行驶的路程s(千米)可用公式
s=vt①
来计算。
有时已知行驶的路程s与行驶的速度v(v≠0),要求行驶的时间t。因为v≠0,所以
t=。②
这就是已知行驶的路程和速度,求行驶的时间的公式。
类似地,如果已知s,t(t≠0),求v,可以得到
v=。③
公式②,③有时也可分别写成t=sv-1;v=st-1。
以上的公式①,②,③都表示路程s,时间t,速度v之间的关系。当v、t都不等于零时,可以把公式①变换成公式②或③。
像上面这样,把一个公式从一种形式变换成另一种形式,叫做公式变形,公式变形往往就是解含有字母系数的方程。
例3在v=v0+at中,已知v、v0、a且a≠0。求t。
解:移项,得v-v0=at。
因为a≠0,方程两边都除以a,得。
例4在梯形面积公式S=中,已知S、b、h且h≠0,求a。
解:去分母,得2S=(a+b)h,ah=2S-bh
因为h≠0,议程两边都除以h,得
。
三、练习
P92中练习1,2,3。
四、小结
公式变形的实质是解含字母系数的方程,要求的字母是未知数,其余的字母均是字母已知数。如例3就是把v、v0、a当作字母已知数,把t当作未知数,解关于t的方程。
五、作业作业:P93中习题9.5A组7,8,9。
另:需要注意的几个问题
一元一次方程教案人教版教学设计篇2
一、教材分析
(一)教材的地位和作用
方程是初等数学的基本知识,也是进一步学习一元一次方程,二元一次方程组,一元一次不等式及一元二次方程的基础.方程在实际问题中的应用,是中学阶段应用数学知识解决实际问题的重要开端,也是增强学生学习数学、应用数学意识的重要题材.本节教材主要起着承前启后的作用,可以说是小学与中学内容上的衔接点,方法上的分水岭.
(二)教学内容
“从算式到方程”新教材与原教材的显著区别:方程这一部分内容不是按照由定义到解法最后讲应用的纯数学体系编排,而是首先从实际问题出发,通过比较算术方法与方程求解的区别,体会方程的优越性,让学生认识到从算式到方程是数学的一大进步.然后再通过具体实际问题所列方程,介绍方程等概念.新教材的编写更加体现了数学的应用价值.
(三)教学重点难点
由于学生在小学阶段已习惯用算术方法解决实际问题,对列方程不太熟练,为了防止学生仍停留在列算式解题的低层上,所以本节重点确定为:让学生在讨论问题、解决问题的过程中,比较列算式与列方程在分析数量关系上的区别及列方程时相等关系的建立.而本节中学生可能感到困难的仍是实际问题相等关系的建立.
二、目标分析
依据课程标准的要求,确定以下目标:
(一)知识与技能目标
1.了解方程等基本概念.
2.会根据具体问题中的数量关系列出方程.
(二)过程与方法目标
经历从具体问题中的数量相等关系列出方程的过程,体会并认识方程是刻画现实世界的一个有效的数学模型,渗透数学建模的思想.
(三)情感目标
让学生进一步认识到方程与现实世界的密切关系,感受数学的价值.培养学生获取信息,分析问题,处理问题的能力。
三、教法与学法分析
根据本节内容与现实生活联系较紧密的特点,教学中选取学生熟悉的、感兴趣的背景材料,充分调动学生的学习热情.并恰当设计各种问题,让学生在教师的引导下,通过小组讨论、相互交流、动手操作、自主探索等活动,获得知识,积累经验,体验成功,积极推行自主学习、合作学习、探究学习等新的学习方式,努力完成教师和学生在教与学活动中角色的转变.
四、教学过程分析
教学目标①进一步理解用等式的性质解简简单的(两次运用等式的性质)一元一次方程
②初步具有解方程中的化归意识;
③培养言必有据的思维能力和良好的思维品质.
教学重点用等式的性质解方程。
知识难点需要两次运用等式的性质,并且有一定的思维顺序。
教学过程(师生活动)设计理念
复习引入解下列方程:(1)x+7=1.2;(2)
在学生解答后的讲评中围绕两个问题:
①每一步的依据分别是什么?
②求方程的解就是把方程化成什么形式?
这节课继续学习用等式的性质解一元一次方程。由于这一课时也是学习用等式的性质解方程,所以通过复习来引入比较自然。
探究新知对于简单的方程,我们通过观察就能选择用等式的哪一条性质来解,下列方程你也能马上做出选择吗?
例1利用等式的性质解方程:
()0.5x-x=3.4(2)
先让学生对第(1)题进行尝试,然后教师进行引导:
①要把方程0.5x-x=3.4转化为x=a的形式,必须去掉方程左边的0.5,怎么去?
②要把方程-x=2.9转化为x=a的形式,必须去掉x前面的“-”号,怎么去?
然后给出解答:
解:两边减0.5,得0.5-x-0.5=3.4-0.5
化简,得
-x=-2.9,、两边同乘-1,得l
x=-2.9
小结:(1)这个方程的解答中两次运用了等式的性质(2)解方程的目标是把方程最终化为x=a的形式,在运用性质进行变形时,始终要朝着这个目标去转化.
你能用这种方法解第(2)题吗?
在学生解答后再点评.
解后反思:
①第(2)题能否先在方程的两边同乘“一3”?
②比较这两种方法,你认为哪一种方法更好?为什么?
允许学生在讨论后再回答.
例2(补充)服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童服装每套平均用布1.5米.现已做了80套成人服装,用余下的布还可以做几套儿童服装?
在学生弄清题意后,教师再作分析:如果设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5x米,根据题意,你能列出方程吗?
解:设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5米,根据题意,得
80x×3.5+1.5x=355.
化简,得
280+1.5x=355,两边减280,得
280+1.5x-280=355-280,化简,得
1.5x=75,两边同除以1.5,得x=50.
答:用余下的布还可以做50套儿童服装.
解后反思:对于许多实际间题,我们可以通过设未知数,列方程,解方程,以求出问题的解.也就是把实际问题转化为数学问题.
问题:我们如何才能判别求出的答案50是否正确?
在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把x=50代入方程80×3.5+1.5x=355的左边,得80×3.5+1.5×50=280+75=355
方程的左右两边相等,所以x=50是方程的解。
你能检验一下x=-27是不是方程的解吗?不同层次的学生经过尝试就会有不同的收获:一部分学生能独立解决,一部分学生虽不能解答,但经过老师的引导后,也能受到启发,这比纯粹的老师讲解更能激发学生的积级性。
这里补充一个例题的目的一是解方程的应用,二是前两节课中已学到了方程,在这里可以进一步应用,三是使后面的“检验”更加自然。
解题的`格式现在不一定要学生严格掌握。
课堂练习①教科书第73页练习第(3)(4)题。
②小聪带了18元钱到文具店买学习用品,他买了5支单价为1.2元的圆珠笔,剩下的钱刚好可以买8本笔记本,问笔记本的单价是多少?(用列方程的方法求解)
建议:采用小组竞赛的方法进行评议
小结与作业
课堂小结建议:①先让学生进行归纳、补充。主要围绕以下几个方面:
(1)这节课学习的内容。
(2)我有哪些收获?
(3)我应该注意什么问题?
②教师对学生的学习情况进行评价。
③思考题用等式的性质求x:-2x=-5x+7引发竞争意识,提高自我评价和自我表现的机会,以达到激发兴趣,巩固知识的目的。评价包括对学生个人、小组,对学生的学习态度、情感投入及学习的效果方面等。
本课作业①必做题:教科书第73页第4(1)、(2)、(4)题;补充:用等式的性质解方程:①3+4x=17;②4-=3
②选做题:教科书第73页第4(3)题,第74页第10题。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1、力求体现新课程理念:数学教学活动必须建立在学生的认知发展水平和已有的知
识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会……学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者.本设计从新课的引人、例题的处理(包括解题后的反思)、反馈练习及小结提高等各环节都力求充分体现这一点.
2、在传统的课堂教学中,教师往往通过大量地讲解,把学生变成任教师“灌输”的“容
器”,学生只能接受、输入并存储知识,而教师进行的也只不过是机械地复制文化知识.新
课程的一个重要方面就是要改变学生的学习方式,将被动的、接受式的学习方式,转变为动手实践、自主探索与合作交流等方式.本设计在这方面也有较好的体现.
3、为突出重点,分散难点,使学生能有较多机会接触列方程,本章把对实际问题的讨论作为贯穿于全章前后的一条主线.对一元一次方程解法的讨论始终是结合解决实际问题进行的,即先列出方程,然后讨论如何解方程,这是本章的又一特点.本设计充分体现了这一特点.
一元一次方程教案人教版教学设计篇3
第三章3.1.1一元一次方程
知识点1:方程的概念
含有未知数的等式叫做方程.归纳整理:方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).知识点2:一元一次方程
只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程.归纳整理:一元一次方程的标准形式是ax+b=0(a≠0),其中x是未知数,a,b是已知数.一元一次方程的最简形式是ax±b=0(a≠0),其中x是未知数,a,b是已知数.判断一个方程是否是一元一次方程应看它的最终形式,而不能看原始形式.知识点3:列方程
列方程的一般步骤:(1)设未知数;(2)分析题意,找出相等关系;(3)把相等关系的左、右两边的量用含有未知数的式子表示出来.知识点4:方程的解与解方程
使方程左、右两边的值相等的未知数的值,叫做方程的解.解方程就是求出使方程中等号左右两边相等的未知数的值的过程.归纳整理:(1)方程的解与解方程的区别:方程的解指的是一个结果,是一个数值,是一个能够使方程左右两边相等的未知数的值;解方程指的是一种过程,就是通过某种变换后,计算得出方程中未知数的值.(2)要检验某个值是不是方程的解,常用的方法是用这个值代替未知数代入方程,看等号左右两边的值是否相等,相等则是方程的解,不相等则不是方程的解.考点1:方程与等式、整式的区别与联系
【例1】下列各式中哪些是整式?哪些是等式?哪些是方程?(1)3x-2x-8;(2)7-3=4;(3)4x-1=2x+6;(4)x+1≥0;(5)|x|+1=2;(6)2x+3y=4;(7)x=7.解:整式:(1);等式:(2)(3)(5)(6)(7);方程:(3)(5)(6)(7).点拨:整式、等式和方程的区别:整式中不含等号、不等号,只含有运算符号、括号;等式中必定有等号;方程中不但含有等号,而且含有未知数.考点2:判断方程是否为一元一次方程22【例2】下列哪些是一元一次方程?(1)x-y=6;(2)2x+5>8;(3)3x-4;(4)x+2x+1=16;(5)x=1;(6)7-1=6;(7)6x+2=8;(8)解:(5)(7)是一元一次方程.点拨:根据一元一次方程的定义解答,一元一次方程必须满足:①未知数只有一个;②未知数的次数都是1.(1)中含有两个未知数;(2)不是等式;(3)不是等式;(4)中x的最高次数是2;(6)中不含未知数;(8)中分母含有未知数.考点3:方程的解
【例3】在方程:①3y-4=1;②=;③5y-1=2;④3(x+1)=2(2x+1)中,解为1的方程是().A.①②
B.①③
C.②④
D.③④答案:C.点拨:检验一个数是不是某方程的解,只需把这个数分别代入方程的左边和右边,如果这个未知数的值能使方程的左边等于右边,那么这个数就是方程的解,否则不是.=x-1.2
一元一次方程教案人教版教学设计篇4
教学目标
一、知识与技能
1、通过对具体实际生活问题的分析,让学生初步感受方程是刻画现实世界的有效模型。
2、感受从算式方法到方程方法解决实际问题的优越性。
二、数学思考
在经历把实际问题抽象成数学问题的过程中培养学生初步的观察分析问题和解决问题的能力。
三、解决问题
能够找到实际问题中的相等关系,将实际问题数学化,体会方程模型在解题中的作用。
四、情感态度价值观
1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、体验在生活中学数学、用数学的价值,感受学习数学的乐趣。
重点难点
重点:分析问题,探寻等量关系列方程。
难点:感受从算式方法到方程方法解决实际问题的优越性;准确找到实际问题中的相等关系。教学过程
【导入】一、【创设情境提出问题】:
1、爸爸的年龄减去10再除以2就是小明的年龄15岁。你能求出小明爸爸的年龄吗?
2、小明今年15岁,爸爸今年40岁。请问几年后小明的年龄是爸爸年龄的二分之一呢?
师生活动:引导学生将贴近他们生活的实际问题转化为数学问题,以实际生活问题为切入点引入新课。学生观察初步感知第1、2小题用算式方法解决难易情况的不同、从而积极探求新方法,得出进一步学习的必要性。
设计意图:问题1用算术解法较容易解决,但问题2却不容易解决,这样产生新旧知识上矛盾冲突,使学生认识到进一步学习的必要性,引导学生走进实际生活,感受数学的魅力。
【活动】二、【解析问题建立模型】
问题1:学校足球队参加足球联赛,得分规则:胜一场得3分,平一场得1分,负一场得0分。
(1)若全胜得了30分,你知道该队比赛多少场吗?
(2)若该队平了3场,共得了30分,你知道该队胜了多少场吗?
(3)若该队共赛了12场,没有负场,共得了30分。该队胜了多少场?
练习:判断下列式子是不是方程,是的打“√”,不是的打“x”.
(1)1+2=3()(2)1+2a=4()(3)x+y=2()
(4)x+1-3()(5)�=0()(6)3�2−2�−1=0()(7)�+2≠3()(8)1�+1=3()
判断是不是方程的关键①______________________②________________________
请你再写出2—-3个方程,并与同伴交流是否正确________________________________________________________________________________________________________
师生活动:教师引导点拨,让学生通过对实际问题的分析初步感受从算式方法到方程方法解决实际问题的优越性。学生自主探索,同伴互助,自己进一步感受从算式方法到方程方法解决实际问题的优越性。
设计意图:让学生经历由算式到方程的过程,体会用列算式方法解题时,列出的算式只能用已知数,而列方程时,方程中既含有已知数,又含有用字母表示的未知数.这就是说,在方程中未知数(字母)可以和已知数一起表示问题中的数量关系,增加了解题条件,有利于问题的解决,并引出方程的概念,找出相等关系是列方程的关键所在。
【活动】三、【探究问题感悟本质】
问题2:一辆客车和一辆卡车同时从A地出发沿同一条公路同方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地.A,B两地间的路程是多少?
师生归纳总结:
由实际问题到方程要经历哪些过程
(1)审:审题、确定相等关系
(2)设:设未知数
(3)列:根据相等关系列出方程
分析实际问题中的数量关系,利用其中的相等关系列出方程,找出相等关系是关键.师生活动:教师引导学生分析问题。学生口答结论,说明理由。
设计意图:引导学生体验建立方程模型的必要性,本质是未知数参与运算。掌握列方程的基本步骤,体会设未知数的基本方法,通过列表,渗透分析形成问题的基本方法,培养分析问题、解决问题的能力。
【活动】四、【学以致用解决问题】
列方程解答下列问题
(1)
用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?
(2)
某校女生占全体学生的52%,女生比男生多80人,这个学校有多少学生?
师生活动:教师引导学生分析解决问题。学生按照列方程步骤解答问题。
设计意图:针对个体差异分层练习,每人都有收获。.及时巩固所学知识,强化本节重点内容。
【活动】五、【畅谈收获感悟课堂】
谈一谈这节课你有什么收获?
师生活动:对所学内容、方法进行归纳。(注意评价的多元化)
设计意图:培养学生反思自己学习过程的意识和习惯,有利于学生掌握、巩固新知,提高学习数学的能力。
【作业】六、【分层作业巩固新知】
必做作业:1.课本P80练习1、2、3
选做作业:列方程解决问题
松滋市出租车白天的收费标准为:起步价8元(即行驶距离不超过3千米都需付8元),行驶超过3千米以后,每增加1千米加收1.5元(不足1千米时按1千米计算).王明和李红乘坐这种出租车去博物馆参观,下车时他们交付了15元车费,那么他们搭乘出租车走了多少千米呢(不计等候时间)?
一元一次方程教案人教版教学设计篇5
1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;
2.培养学生观察能力,提高他们分析问题和解决问题的能力;
3.使学生初步养成正确思考问题的良好习惯.
教学重点和难点
一元一次方程解简单的应用题的方法和步骤.
课堂教学过程设计
一、从学生原有的认知结构提出问题
在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?
为了回答上述这几个问题,我们来看下面这个例题.
例1某数的3倍减2等于某数与4的和,求某数.
(首先,用算术方法解,由学生回答,教师板书)
解法1:(4+2)÷(3-1)=3.
答:某数为3.
(其次,用代数方法来解,教师引导,学生口述完成)
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.
二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤
例2某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原来有多少面粉?
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)
3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得
x-15%x=42500,
所以x=50000.
答:原来有50000千克面粉.
此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)
教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;
(2)例2的解方程过程较为简捷,同学应注意模仿.
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;
(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);
(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;
(4)求出所列方程的解;
(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.
例3(投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)
解:设第一小组有x个学生,依题意,得
3x+9=5x-(5-4),
解这个方程:2x=10,
所以x=5.
其苹果数为3×5+9=24.
答:第一小组有5名同学,共摘苹果24个.
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.
(设第一小组共摘了x个苹果,则依题意,得)
三、课堂练习
1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?
2.我国城乡居民1988年末的储蓄存款达到3802亿元,比1978年末的储蓄存款的18倍还多4亿元.求1978年末的储蓄存款.
3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数.
四、师生共同小结
首先,让学生回答如下问题:
1.本节课学习了哪些内容?
2.列一元一次方程解应用题的方法和步骤是什么?
3.在运用上述方法和步骤时应注意什么?
依据学生的回答情况,教师总结如下:
(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;
(2)以上步骤同学应在理解的基础上记忆.
五、作业
1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?
2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?
3.某厂去年10月份生产电视机2050台,这比前年10月产量的2倍还多150台.这家工厂前年10月生产电视机多少台?
以上是蒙氏日常挤海绵教案设计的所有内容,希望读者能够从中获得一些有益的信息和启示。谢谢阅读!
一元一次方程教案人教版教学设计篇6
教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
重点、难点
1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
教学过程
一、复习提问
小学里已经学过列方程解简单的应用题,让我们回顾一下,如何列方程解应用题?
例如:一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得
1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授:
我们再来看下面一个例子:
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?
问:你能解决这个问题吗?有哪些方法?
(让学生思考后,回答,教师再作讲评)
算术法:(328-64)÷44=264÷44=6(辆)
列方程解应用题:
设需要租用x辆客车,那么这些客车共可乘44x人,加上乘坐校车的64人,就是全体师生328人,可得。
44x+64=328(1)
解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?
(学生可能利用逆运算求解,教师加以肯定,同时指出本章里我们将要学习解方程的另一种方法。)
问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的.年龄是我年龄的三分之一?”
小敏同学很快说出了答案。“三年”。他是这样算的:
1年后,老师46岁,同学们的年龄是14岁,不是老师的三分之一。
2年后,老师47岁,同学们的年龄是15岁,也不是老师的三分之一。
3年后,老师48岁,同学们的年龄是16岁,恰好是老师的三分之一。
你能否用方程的方法来解呢?
通过分析,列出方程:13+x=(45+x)(2)
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。也就是只要将x=1,2,3,4,……代人方程(2)的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,
因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?
同学们动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
这正是我们本章要解决的问题。
三、巩固练习
1.教科书第3页练习1、2。
2.补充练习:检验下列各括号内的数是不是它前面方程的解。
(1)x-3(x+2)=6+x(x=3,x=-4)
(2)2y(y-1)=3(y=-1,y=2)
(3)5(x-1)(x-2)=0(x=0,x=1,x=2)
四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
五、作业。教科书第3页,习题6.1第1、3题。
6.2解一元一次方程
1.方程的简单变形
教学目的
通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。
重点、难点
1.重点:方程的两种变形。
2.难点:由具体实例抽象出方程的两种变形。
教学过程
一、引入
上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。
二、新授
让我们先做个实验,拿出预先准备好的天平和若干砝码。
测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。
如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。
如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?
让同学们观察图6.2.1的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。
一元一次方程教案人教版教学设计篇7
一、素质教育目标
(一)知识教学点:
1.熟练运用判别式判别一元二次方程根的情况.
2.学会运用判别式求符合题意的字母的取值范围和进行有关的证明.
(二)能力训练点:
1.培养学生思维的严密性,逻辑性和灵活性.
2.培养学生的推理论证能力.
(三)德育渗透点:通过例题教学,渗透分类的思想.
二、教学重点、难点、疑点及解决方法
1.教学重点:运用判别式求出符合题意的字母的取值范围.
2.教学难点:教科书上的黑体字“一元二次方程ax2+bx+c=0(a≠0),当>0时,有两个不相等的实数根;当=0时,有两个相等的实数根;当<0时,没有实数根”可看作一个定理,书上的“反过来也成立”,实际上是指它的逆命题也成立.对此的正确理解是本节课的难点.可以把这个逆命题作为逆定理.
三、教学步骤
(一)明确目标
上节课学习了一元二次方程根的判别式,得出结论:“一元二次方程ax2+bx+c=0(a≠0),当>0时,有两个不相等的实数根;当=0时,有两个相等的实数根;当<0时,没有实数根.”这个结论可以看作是一个定理.在这个判别方法中,包含了所有各种情况,所以反过来也成立,也就是说上述结论的逆命题是成立的,可作为定理用.本节课的目标就是利用其逆定理,求符合题意的字母的取值范围,以及进行有关的证明.
(二)整体感知
本节课是上节课的延续和深化,主要是在“明确目标”中所提的逆定理的应用.通过本节课的内容的学习,更加深刻体会到“定理”与“逆定理”的灵活应用.不但不求根就可以知道根的情况,而且知道根的情况,还可以确定待定的未知数系数的取值,本节课内容对学生严密的逻辑思维及思维全面性进行恰如其分的训练.
(三)重点、难点的学习及目标完成过程
1.复习提问
(1)一元二次方程的一般形式?说出二次项系数,一次项系数及常数项.
(2)一元二次方程的根的判别式是什么?用它怎样判别根的情况?
2.将复习提问中的问题(2)的正确答案板书,反之,即此命题的逆命题也成立,即“一元二次方程ax2+bx+c=0,如果方程有两个不相等的实数根,则>0;如果方程有两个相等的实数根,则=0;如果方程没有实数根,则<0.”即根据方程的根的情况,可以决定值的符号,‘’的符号,可以确定待定的字母的取值范围.请看下面的例题:
例1已知关于x的方程2×2-(4k+1)x+2k2-1=0,k取什么值时
(1)方程有两个不相等的实数根;
(2)方程有两个相等的实数根;
(1)方程无实数根.
解:a=2,b=-4k-1,c=2k2-1,
b2-4ac=(-4k-1)2-4×2×(2k2-1)
=8k+9.
方程有两个不相等的实数根.
方程有两个相等的实数根.
方程无实数根.
本题应先算出“”的值,再进行判别.注意书写步骤的简练清楚.
练习1.已知关于x的方程x2+(2t+1)x+(t-2)2=0.
t取什么值时,(1)方程有两个不相等的实数根?(2)方程有两个相等的实数根?(3)方程没有实数根?
学生模仿例题步骤板书、笔答、体会.
教师评价,纠正不精练的步骤.
假设二项系数不是2,也不是1,而是k,还需考虑什么呢?如何作答?
练习2.已知:关于x的一元二次方程:
kx2+2(k+1)x+k=0有两个实数根,求k的取值范围.
和学生一起审题(1)“关于x的一元二次方程”应考虑到k≠0.(2)“方程有两个实数根”应是有两个相等的实数根或有两个不相等的实数根,可得到≥0.由k≠0且≥0确定k的取值范围.
解:=[2(k+1)]2-4k2=8k+4.
原方程有两个实数根.
学生板书、笔答,教师点拨、评价.
例求证:方程(m2+1)x2-2mx+(m2+4)=0没有实数根.
分析:将算出,论证<0即可得证.
证明:=(-2m)2-4(m2+1)(m2+4)
=4m2-4m4-20m2-16
=-4(m4+4m2+4)
=-4(m2+2)2.
不论m为任何实数,(m2+2)2>0.
-4(m2+2)2<0,即<0.
(m2+1)x2-2mx+(m2-4)=0,没有实根.
本题结论论证的依据是“当<0,方程无实数根”,在论证<0时,先将恒等变形,得到判断.一般情况都是配方后变形为:a2,a2+2,(a2+2)2,-a2,-(a2+2)2,-(a+2)2,……从而得到判断.
本题是一道代数证明题,和几何类似,一定要做到步步有据,推理严谨.
此种题型的步骤可归纳如下:
(1)计算;(2)用配方法将恒等变形;
(3)判断的符号;(4)结论.
练习:证明(x-1)(x-2)=k2有两个不相等的实数根.
提示:将括号打开,整理成一般形式.
学生板书、笔答、评价、教师点拨.
(四)总结、扩展
1.本节课的主要内容是教科书上黑体字的应用,求符合题意的字母的取值范围以及进行有关的证明.须注意以下几点:
(1)要用b2-4ac,要特别注意二次项系数不为零这一条件.
(2)认真审题,严格区分条件和结论,譬如是已知>0,还是要证明>0.
(3)要证明≥0或<0,需将恒等变形为a2+2,-(a+2)2……从而得到判断.
2.提高分析问题、解决问题的能力,提高推理严密性和思维全面性的能力.
四、布置作业
1.教材P.29中B1,2,3.
2.当方程x2+2(a+1)x+a2+4a-5=0有实数根时,求a的正整数解.
(2、3学有余力的学生做.)
五、板书设计
12.3一元二次方程根的判别式(二)
一、判别式的意义:……三、例1……四、例2……
=b2-4ac…………
二、方程ax2+bx+c=0(a≠0)
(1)当>0,……练习1……练习2……
(2)当=0,……
(3)当<0,……
反之也成立.
六、作业参考答案
方程没有实数根.
B3.证明:=(2k+1)2-4(k-1)=4k2+5
当k无论取何实数,4k2≥0,则4k2+5>0
>0
方程x2+(2k+1)x+k-1=0有两个不相等的实数根.
2.解:方程有实根,
=[2(a+1)]-4(a2+4a-5)≥0
即:a≤3,a的正整数解为1,2,3
当a=1,2,3时,方程x2+2(a+1)x+a2+4a-5=0有实根.
3.分析:“方程”是一元一次方程,还是一元二次方程,需分情况讨论:
(2)当2m-1≠0时,
一元一次方程教案人教版教学设计篇8
学习目标
1、一元二次方程的求根公式的推导
2、会用求根公式解一元二次方程。
3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯。
学习重、难点
重点:一元二次方程的求根公式。
难点:求根公式的条件:b2-4ac≥0
学习过程:
一、自学质疑:
1、用配方法解方程:2×2—7x+3=0。
2、用配方解一元二次方程的步骤是什么?
3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?
二、交流展示:
刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c=0(a≠0)呢?
三、互动探究:
一般地,对于一元二次方程ax2+bx+c=0
(a≠0),当b2—4ac≥0时,它的根是
用求根公式解一元二次方程的方法称为公式法
由此我们可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系数a、b、c确定的。因此,在解一元二次方程时,先将方程化为一般形式,然后在b2—4ac≥0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根。
注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号。
(2)在运用求根公式求解时,应先计算b2—4ac的值;当b2—4ac≥0时,可以用公式求出两个不相等的实数解;当b2—4ac<0时,方程没有实数解。就不必再代入公式计算了。
四、精讲点拨:
例1、课本例题
总结:其一般步骤是:
(1)把方程化为一般形式,进而确定a、b,c的值。(注意符号)
(2)求出b2—4ac的值。(先判别方程是否有根)
(3)在b2—4ac≥0的前提下,把a、b、c的直代入求根公式,求出的值,最后写出方程的根。
例2、解方程:
(1)2×2—7x+3=0(2)x2—7x—1=0
(3)2×2—9x+8=0(4)9×2+6x+1=0
五、纠正反馈:
做书上第P90练习。
六、迁移应用:
例3、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长。
例4、求方程的两根之和以及两根之积。