用配方法解一元二次方程的优秀教案(精选3篇)

daniel 0 2024-02-21

配方法解一元二次方程教案篇1

教学内容:

p53–54练习十一1,2,3

教学目标:

1.通过观察天平演示,使学生初步理解方程的意义;

2.使学生能够判断一个式子是不是方程,并能解决简单的实际问题;

3.培养学生观察、描述、分类、抽象、概括、应用等能力。

教学重点:

判断一个式子是不是方程;初步理解方程的意义。

课前准备:

课件,习题板

教学过程:

一、复习旧知,激趣导入

同学们,我们上节课学了用含有字母的式子表示一些数量关系,现在老师要考考你们,已知我们学校有88位同学,再加上所有老师,你能用一个式子来表示师生一共有多少人吗?(板书:88+x)。学得真不错,今天我们要进一步来研究这些含有未知数的式子所隐藏的数学奥秘,想知道吗?请你用饱满的姿态告诉老师!

二、出示学习目标

1、初步理解方程的意义,会判断一个式子是否是方程

2、按要求用方程表示出数量关系,培养学生观察、比较、分析概括的能力。

三、学习过程。

(一)认识天平

(二)新课学习

自学指导(一)。

自学p53,分别说一说图1,图2,,显示的信息。

图1天平两边平衡,一个空杯重100克。

图2在空杯里加一杯水后天平不平衡了。

自学指导(二)

再看图3说说图3显示的信息。

天平1杯子和里面的水比200克法码重

天平2杯子和里面的水比300克法码轻

自学指导(三)

请用算式表示图3数量关系。

天平1、100+x>200

天平2、100+x<300

自学指导(四)

再看图4说说图4显示的信息,请用算式表示图4数量关系

100+x=250

自学指导(五)

观察比较下列算式说说你的发现

观察比较

100+x>200

100+x<300

100+x=250

前面两个算式两边不相等,后面一个算式两边是相等的。

教师总结:像这样两边相等的算式我们把它叫做等式。(板书)

课堂练习(一)

写出几个等式

自学指导(六)

请学生把这里的等式分类,并说说你们是如何分类的?

20+30=50

20+χ=100

50×2=100

14-8=6

3y=180

78×3=234

100+2y=3×50

学生汇报后让学生说出分类的理由。(有的含有未知数,有的没有未知数)

教师总结:含有未知数的等式,称为方程。(板书)

课堂练习(二)

请大家写出几个方程。

四、小结:回答什么是方程?

感谢您花时间阅读本文。如果您觉得用配方法解一元二次方程的优秀教案合集这篇文章对您有所帮助,我们非常希望您能够将其分享给更多的人。最后我们将继续努力,为您提供更多有价值的内容。祝您生活愉快!

配方法解一元二次方程教案篇2

一、复习引入

(学生活动)解下列方程:

(1)2×2+x=0(用配方法)(2)3×2+6x=0(用公式法)

老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.

二、探索新知

(学生活动)请同学们口答下面各题.

(老师提问)(1)上面两个方程中有没有常数项?

(2)等式左边的各项有没有共同因式?

(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.

因此,上面两个方程都可以写成:

(1)x(2x+1)=0(2)3x(x+2)=0

因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)

因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的.乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.

例1解方程:

(1)10x-4.9×2=0(2)x(x-2)+x-2=0(3)5×2-2x-14=x2-2x+34(4)(x-1)2=(3-2x)2

思考:使用因式分解法解一元二次方程的条件是什么?

解:略(方程一边为0,另一边可分解为两个一次因式乘积.)

练习:下面一元二次方程解法中,正确的是()

A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7

B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35

C.(x+2)2+4x=0,∴x1=2,x2=-2

D.x2=x,两边同除以x,得x=1

三、巩固练习

教材第14页练习1,2.

四、课堂小结

本节课要掌握:

(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.

(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.

五、作业布置

教材第17页习题6,8,10,11

配方法解一元二次方程教案篇3

教学目标:

通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型

重点:

让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题

难点:

寻找等量关系

教学过程:

看一看:课本99页探究2

问题:1“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?

2、“甲、乙两种作物的总产量比为3:4”是什么意思?

3、本题中有哪些等量关系?

提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?

思考:这块地还可以怎样分?

练一练

一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:

农作物品种每公顷需劳动力每公顷需投入奖金

水稻4人1万元

棉花8人1万元

蔬菜5人2万元

已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的’资金正好够用?

问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?

教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。公路运价为1、5元/(吨?千米),铁路运价为1、2元/(吨?千米),这两次运输共支出公路运费15000元,铁路运费97200元。这批产品的销售款比原料费与运输费的和多多少元?

  • 下一篇:年财务工作人员个人总结(6篇)
    上一篇:军训的总结字,军训总结字大学生200字(整理5篇 )
    相关文章