《机械设计基础》课件好作文推荐模板(精选5篇)
《机械设计基础》课件篇1
教学目标
1.科学探究:会做杠杆尺的探索性实验,能够观察记录杠杆尺的状态,学习使用图示法简化问题。能够从众多看似杂乱的数据中,分析整理出杠杆省力的规律。
2.情感态度和价值观:在科学探究过程中,培养乐于探究、注重科学事实、敢于提出不同见解、乐于合作与交流的意识;能够利用杠杆解决生活中的实际问题。
3.科学知识:能合理解释身边的杠杆工具的工作原理。
教学重难点
分析、整理数据,发现杠杆省力的规律。能够从众多看似杂乱的数据中,分析整理出杠杆省力的规律。
器材准备
学生材料:杠杆尺(课前组装好)、钩码一盒、实验记录表。(每组一份)
老师材料:学生材料一份、课件、老虎钳、镊子、小黑板。
教学建议
本课是具体认识一种简单机械的起始课,教师在实验过程中要特别注意“教、扶、放”的关系。
教学过程
第一课时
一、导入
1.科技史引入-阿基米德的故事
讲一讲古希腊阿基米德的大话、提出质疑阿基米德为什么说出如此大话?他所说的是一种什么神奇的装置呢?
2.活动一:我们也来撬地球。
⑴给你一根撬棍,你会如何撬起地球?模拟体验撬动地球(两种方法)
⑵认识它的结构(阻力点、支点、动力点):像这种撬动“地球”的装置叫杠杆。杠杆工作时总围绕一个点转动。这个点叫支点。“撬地球”时,对杠杆用力的那点就是动力点,悬挂“地球”的点就是阻力点。
二、活动二:寻找杠杆的秘密。
1.分别移动杠杆支点、阻力点、动力点的位置,再去撬一撬“地球”,效果有什么不同?
2.看来并非任何情况下杠杆都能轻松撬起重物,怎样利用它才能使我们更省力?下面我们借助“杠杆尺”来进行进一步研究。
3.认识杠杆尺
⑴它的支点在哪里?我们把挂在左边的钩码看成“地球”,那么它挂的位置就是阻力点。右边不用手按,也挂上钩码来显示力的大小,那么这些钩码就可就成为动力,挂的位置就是动力点。既然这样,做实验的时候左右两边都只能在一个位置挂上钩码,不能遍地开花的到处挂。
⑵要想更明晰的分析实验现象,记录是必不可少的。怎样记录呢?
A、独立思考。
B、出示记录单:
杠杆尺不同时候的状态记录
《机械设计基础》课件篇2
轮轴
教学目标
1.科学探究:能根据自已的原认知对问题大胆提出猜想
2.会利用观察,实验,制作等方法探究轮轴的秘密。
3.认识轮轴的结构,知道利用轮带动轴转动省力,利用轴带动轮转动可以省距离
5.并能识别生活中用轮轴的实例,会分折它是怎样提高工作效率的。
6.感受到利用科学技术制作出的工具可以改善生活,提高工作效率。愿意合作交流,能积极参与有关轮轴话题的讨论。
器材准备:
演示实验材料:生活中应用轮轴工作的物品(实物、图片、课件)、演示用轮轴实验套材。易拉罐瓶、吸管、线绳做成的轱辘。
分组实验材料:硬纸板、剪刀、圆规(或者具有不同大小的圆面的物体)、钩码、铁架、线绳。
学生实验材料:
教学提示:
1.注意本课中有两次猜想与假设(轮轴有什么作用,轮再大一点会更省力吗)
2.为了提高学生兴趣和参与度,本节课安排了两个制作活动:制作一个纸板轮轴、制作一个轱辘。其中纸制轮轴在使用的过程中可能与线有较大摩擦,另在打孔过程中学生也会有困难,建议有条件的学校使用实验工具箱提供的工具,把这个活动作为兴犹未尽的孩子们的课后制作。易拉罐轱辘教师可以制作演示,有可能也可以为没个小组制作一个,让学生体验。
教学过程:
一、教学导入
1.轮轴的概念:
出示水龙头:当取下自来水开关上的“圆盘”时,我们还能轻松的拧动开关吗?
像水龙头这样,轮子和轴固定在一起,可以转动的机械叫做轮轴。
2.你知道轮轴有什么作用吗?(板书学生的猜想:省力?)
二、探究轮轴的秘密。
1.让学生简单设计轮轴机械是否省力的实验:
用一个轮轴实验装置来研究轮轴的作用,把一定数量的钩码挂在轴上,看成要克服的阻力,在轮上挂钩码,看成是我们用力的大小,观察看样的力量可以使轮轴两端达到平衡。(不一定是两边位置一样高,可以是一边高一边低,但两边的钩码在不用外力的情况下在空中应该是静止不动的。因此轮轴本身的摩擦力不能太大。)
2.分组领取轮轴等实验材料(各组轴相同,轮有大小不同的两种)。[实验条件受到限制的学校:下面我们制作一个轮轴,来研究轮轴的作用,教师巡视各组完成情况,并发放其他实验材料。]
我们的发现:
3.各组交流汇报实验的结果和发现。(教师以小黑板板书记录数据)
a.共识:轮带动轴可以省力,轴带轮转费力
b.新发现:不同轮轴省力大小不同。(这是怎么回事?)
4.轮的大小与轮轴作用的影响
把各组轮轴收起来,分两类放在一起。对比它们的轮和轴。发现:轴相等的情况下,轮越大越省力。
设想:如果轮的大小不变,怎样才能使轮轴省更多的力?(轴缩小)
三、轮轴的应用
1.找一找,我们生活中有哪些地方运用了轮轴。
出示图片:方向盘、门把手、拧子、扳手、闸阀等,它们是轮轴吗?它们的哪一部分相当于轮,那一部分相当于轴?
2.最早的轮轴——轱辘。
a.介绍轱辘的历史(参考课本第28页资料)
b.演示轱辘提重物。(好玩吗?有兴趣下课也做一个?)
《机械设计基础》课件篇3
一、课题名称
硬质合金
二、教材版本
高等教育出版社
李世维主编
三、教学目标
1、能力目标
培养学生研究新生事物的能力,激发学生的创造潜能以及对新生事物的好奇心。
2、情感目标
激发同学们利用自己的所学为祖国贡献才干的热情与豪情。
3、知识目标
能使学生认识硬质合金,了解它的特点和应用,掌握几种最常见的硬质合金的牌号和用于。
四、教学重点
硬质合金的分类和牌号
五、教学难点硬质合金的加工
六、教学过程
1、通过小说人物引出主题
2、讲授新课
一、定义
是将一种或多种难熔的金属碳化物粉末与粘结剂混合,加压成型,再经烧结而成的粉末冶金材料。即将高硬度、难熔的碳化钨(wc)、碳化钛(tic)、碳化钽(tac)等和钴(co)、镍(nie)等粘结剂金属,经制粉、配料(按一定比例混合)、压制成型,再通过高温烧结而成。
二、特点
1、硬度高(86~93hra,相当于69~81hrc)
2、红硬性好(温度达900~1000℃时,仍保持60hrc)n
3、耐磨性好。硬质合金刀具比高速钢切削速度高4~7倍,刀具寿命高5~80倍。制造模具、量具,寿命比合金工具钢高20~150倍。可切削50hrc左右的硬质材料
4、硬质合金脆性大。不能进行切削加工,难以制成形状复杂的整体刀具,因而常制成不同形状的刀片,采用焊接、粘接、机械夹持等方法安装在刀体或模具体上使用。
n被誉为“工业牙齿”n
三、用途
1、硬质合金广泛用作刀具材料,如车刀、铣刀、刨刀、钻头、镗刀等,用于切削铸铁、有色金属、塑料、化纤、石墨、玻璃、石材和普通钢材,也可以用来切削耐热钢、不锈钢、高锰钢、工具钢等难加工的材料。新型硬质合金刀具的切削速度等于碳素钢的数百倍。
2、硬质合金还可用来制作矿山工具(如凿岩工具、采掘工具、钻探工具)、量具、耐磨零件、金属磨具、汽缸衬里、精密轴承、喷嘴、五金模具(如拉丝模具、螺栓模具、螺母模具、以及各种紧固件模具)等。n3日常用品,钨钢手表等
四、分类n
1、钨钴类硬质合金
n(1)主要成分:碳化钨(wc)和粘结剂(co)
n(2)牌号:是由“yg”(“硬、钴”两字汉语拼音字首)和平均含钴量的百分数组成。
例如,yg8,表示平均含co=8%其余为碳化钨的钨钴类硬质合金。常用牌号,yg3yg6yg8yg15yg20等。
n(3)用途:适用于加工铸铁等脆性材料,如,yg3含钴量少,适合精加工;yg8含钴量多,适合粗加工。
2、钨钴钛类硬质合金
n(1)主要成分:是碳化钨、碳化钛(tic)及钴
n(2):牌号:由“yt”(“硬、钛”两字汉语拼音字首)和碳化钛平均含量组成.n例如,yt15,表示平均含tic=15%,其余为碳化钨和钴含量的钨钴钛类硬质合金.常用牌号,yt5yt15yt30n(3)用途:适用于加工钢或其他韧性较大的塑性材料。如,yt5含钴量多,适合粗加工,yt15含钴量少,适合精加工。
3、钨钛钽(铌)钴类硬质合金
n(1)主要成分:是碳化钨、碳化钛、碳化钽(或碳化铌)及钴,这类硬质合金又称“通用硬质合金”或“万能类硬质合金”。
n(2)牌号:由“yw”(“硬”、“万”两字汉语拼音字首)加顺序号组成,如yw1,yw2,yw3等。
n(3)用途:既可以加工钢又可以加工铸铁及有色金属等,主要用于加工高温合金、高锰钢、不锈钢以及可锻铸铁、球墨铸铁、合金铸铁等难加工的材料。
4、钢结硬质合金
n(1)主要成分:碳化钛和高速钢(粘剂)
n(2)特点:性能介于高速钢与硬质合金之间,可以锻造、焊接、切削加工和热处理,韧性好。
n(3)用途:适用于制造各种形状复杂的刀具,如麻花钻头、铣刀等,也可制造较高温度下工作的模具和耐磨零件。n
小结
一、定义
n碳化物+粘结剂————-硬质合金n
二、特点n
1、硬n
2、红硬n
3、耐磨n
4、脆n
三、用途n
1、高速刀具n
2、矿山工具n
3、钨钢手表n
四、分类
1钨钴类硬质合金yg3(精)yg8(粗)
2、钨钴钛类硬质合金
yt15(粗)
yt30(精)
3、万能硬质合金yw1yw24钢结类硬质合金
《机械设计基础》课件篇4
一、考试的性质与地位
《机械设计基础》是高等工科院校机械类专业的一门重要技术基础课,它在教学计划中起着承先启后的桥梁作用,为学生学习后续的专业课打下必要的基础。它不仅具有较强的理论性,同时具有较强的实用性。它在培养机械类工程技术人才的全过程中,具有培养学生的工程意识,增强学生的机械理论基础,提高学生对机械技术工作的适应性,培养其开发创新能力的重要作用。本课程的目标在于培养学生掌握机械设计的基本知识、基本理论和基本方法;培养学生具备机械设计中的一般通用零部件设计方法的能力,为后继专业课程学习和今后从事设计工作打下坚实的基础。
二、考试内容(一)绪论
1.了解本课程的研究对象及本课程在教学中的地位。2.掌握机器、机构、构件、零件等基本概念。3.了解对机械设计的基本要求。(二)平面机构的运动简图及自由度1.掌握运动副的概念及分类。2.能够绘制简单的机构运动简图。3.掌握机构自由度的计算。(三)平面连杆机构
1.了解平面连杆机构的基本类型、特点及应用。2.掌握铰链四杆机构基本类型的判别。
3.掌握四杆机构基本特性及四杆机构的设计方法。(四)凸轮机构
1.了解凸轮机构的类型和应用。
2.熟悉凸轮从动件常用运动规律,了解其特性及应用场合。3.掌握图解法设计凸轮轮廓的方法。4.熟悉凸轮机构基本尺寸的确定原则。(五)螺纹联接
1.了解螺纹的形成、分类、主要参数、特点和应用。2.掌握螺纹联接的主要类型和预紧、防松的原理和方法。3.掌握螺纹联接的强度计算。4.了解提高螺栓联接强度的措施。(六)带传动1.了解带传动的工作原理、特点和应用,了解v带的规格、带轮结构、带传动张紧的目的及张紧装置。
2.掌握带传动的受力分析及带的应力分析。3.掌握带传动的弹性滑动和打滑的概念。
4.掌握带传动的失效形式和计算准则,掌握带传动设计中主要参数的选择原则。会设计普通v带传动。(七)齿轮传动
1.了解齿轮传动的类型、特点及应用。2.掌握齿廓啮合基本定律。3.熟悉渐开线的性质。
4.熟练掌握渐开线标准直齿圆柱齿轮的基本参数和几何尺寸计算。
5.掌握渐开线直齿圆柱齿轮的正确啮合条件、连续传动条件和无侧隙啮合等概念。6.了解渐开线的切齿原理,了解根切、最少齿数及变位齿轮的概念。
7.了解渐开线斜齿圆柱齿轮齿廓曲面的形成及啮合特点,掌握其正确啮合条件。8.理解斜齿轮各部分名称、重合度、当量齿数的概念,能计算渐开线正常齿标准斜齿圆柱齿轮的尺寸。
9.了解直齿圆锥齿轮的啮合特点。10.掌握齿轮传动的五种失效形式。
11.掌握直齿轮、斜齿轮和锥齿轮的受力分析。
12.掌握直齿轮传动的接触疲劳强度计算和弯曲疲劳强度的计算准则及计算方法。13.了解齿轮传动的结构。(八)蜗杆传动
1.了解蜗杆传动的特点和类型。
2.掌握圆柱蜗杆传动的主要参数和几何尺寸计算。3.了解蜗杆传动的失效形式,材料和结构。4.熟练掌握蜗杆传动的受力分析。5.了解蜗杆传动强度计算的特点。
6.了解蜗杆传动热平衡计算的目的,了解散热及冷却措施,了解传动的效率与润滑的关系。(九)齿轮系
1.了解轮系的类型及应用。
2.熟练掌握定轴轮系、不太复杂的周转轮系及复合轮系的传动比计算,包括从动轮转向的判定方法。(十)轴和轴毂连接1.了解轴的分类、应用。2.了解轴的常见失效形式、对轴材料的基本要求,轴的材料及热处理的选用。3.掌握轴的结构设计方法,能识别和改正不符合基本要求的错误结构。4.掌握轴的强度计算方法。
5.了解轴的刚度计算及轴的临界转速概念。
6.熟悉轴毂连接的几种形式及应用;掌握平键的选用及设计方法。(十一)滚动轴承
1.了解滚动轴承的基本类型、特点和应用。
2.掌握滚动轴承代号的表示方法,记住其公差等级代号和基本代号的意义。3.了解滚动轴承的主要失效形式和计算准则。4.熟练掌握滚动轴承寿命计算的方法。5.掌握滚动轴承组合设计方法。
三、试卷结构
1、考试总分:150分
2、考试时间:120分钟
3、试题难易比例:
较容易题约40%中等难度题约50%较难题约10%
四、建议使用教材与参考书教材:
陈立德,机械设计基础.北京:高等教育出版社,2003年参考书:
1、潘骏等主编.机械设计基础.南京:南京大学出版社,2007
2、杨可帧,程光蕴.机械设计基础(第3版).北京:高等教育出版社,1999
3、卢玉明.机械设计基础(第6版).北京:高等教育出版社,1998
4、董玉平,机械设计基础.北京:机械工业出版社,1998
《机械设计基础》课件篇5
一、教学目的与要求:
1、了解机器机构构件和零件等基本概念
2、了解本课程的内容性质和任务
1)了解工程力学的基本知识和相应简单扼要的计算
2)了解机械机械工程材料的基础知识;
3)了解常用的机构和机械传动原理;
4)了解金属零件的联接和支承
5)了解液压传动的基本内容
二、教学方法与手段
方法:讲授法、谈话法、讨论法、演示法、参观法、调查法、练习法、实验法、引导发现法、自学辅导法、案例教学法、情境教学法、实训作业法等。
手段:常规或现代(多媒体投影、音像资料、各种教具、实物、案例素材文件等)。
三、教学重点、难点:
机器与机构、构件和零件概念,的区别和联系
四、课时分配计划:2课时布置作业:0-1,0-2实施情况及课后教学效果分析
引言
当人们拓展视野、深入到创造物质世界活动中时会发现,单纯的数学、物理或化学,常常无法解决实际应用问题。不同的应用领域,需要将数、理、化知识适度综合,高度概括,从而形成解决问题更为直接、更为有效的理论体系,这便产生了诸如机械工程、电气工程、计算机工程、化学工程、建筑工程等门类众多的应用工程科学。它们是创造人类社会多姿多彩物质世界的应用理论基础。
一、本课程的研究对象
机械工程的研究对象是机械。
什么是机械?机械是机器与机构的总称。1.机器
机器是用来变换或传递能量、物料和信息,能减轻或替代人类劳动的工具。
图1一1所示的台钻是比较常见的典型机器。观察其工作过程:电动机1转动,驱动带传动,带传动又将运动和动力传递给变速箱2内的齿轮系,变速箱中的主轴与钻头3直接联接,从而熔话动与动力传涕给了钻头。最后完成对工件的切削加工。
图O-2所示为牛头刨床,它由电动机1通过带传动3和齿轮传动装置2实现减速,又通过暇动导杆机构9改变运动形式,使滑枕5带动刨刀7作往复移动来实现刨削。
由上述两例分析表明,机器通常由三大部分组成:原动装置一传动装置一执行装置。机械最常见的原动装置是电动机。传动装置和执行装置通常是由一些机构或传动组成(如台钻的传动装置为带传动和变速箱,牛头刨床的执行装置为摆动导杆机构等)。2.机构
机构是具有确定相对运动的构件组合。图0一3所示为实现滑枕运动的摆动导杆机构,它由若干构件(大齿轮6,滑块
1、3,导杆2,滑枕4)组合而成。从运动的角度看,构件是机器中运动的最小单元。3.机械零件
从制造的角度看,机器是由许多零件组成的。零件是不可拆的最小制造单元。
一个零件可能是一个构件(如图O-3中的导杆)。但多数构件是由若干零件固定联接而成的刚性组合。如图。一4所示的齿轮构件,就是由轴、键和齿轮联接而成。
4、运动副
构件与构件之间既保证相互接触和制约,又保持确定的运动,这样一种可动联接称为“运动副”。只允许被联接的两构件在同一平面或相互平行的平面内作相对运动的运动副称为平面运动副。按照接触特性,平面运动副可分为低副和高副。构件问的接触形式为面接触的运动副称为低副。常见的平面低副有回转副和移动副。图0一5b所示为回转副及其运动简图符号,回转副有时也称为铰链(图O一5c);图0一5a所示为移动副及其运动简图符号。构件间的接触形式为点、线接触的运动副称为高副。如图O-6所示,在凸轮机构和齿轮机构中,构件1和构件2形成的运动副均为高副。
综上所述,归纳要点如下:
1)构件与零件的区别在于:构件是机械运动的基本单元,零件是机械制造的基本单元;有时一个零件就是一个构件,但通常构件由多个零件刚性固接而成。2)机器与机构的区别在于:虽然机器和机构都具有确定的相对运动,且机器可以是一个机构或由若干构件与零件组成,但机器具有能代替或减轻人类劳动,完成功能转换的特征,而机构则不具有此特征。
3)平面运动副可分为低副和高副:低副为面接触;高副为点或线接触。
二、本课程的主要内容
1、机械产生的步骤
实际应用的机械是怎样产生的?它通常要经历这样一些步骤:1)根据工作要求,用规定的机构运动简图符号勾画出机器和机构的运动简图,并分析构件的运动速度和加速度等情况,通常称之为机械的运动设计。
2)按类比法,确定所要设计零件的材料;对铁碳合金材料,还要考虑其热处理方式。这一步骤可称之为机械的材料设计。
3)根据机器运动设计的简图,对各构件或零、部件进行受力分析,最终确定零件的受载情况,通常称之为机械的工程力学分析。
4)根据零件的最大受载和零件可能产生的失效破坏形式,按设计准则确定零件的主要参数,这称之为机械C零件)的强度设计。5)计算零件的全部几何尺寸,按机械制图标准规范和公差配合要求画出零件工作图,通常称之为机械零件的结构设计。。
6)根据零件工作图,进行加工制造的工艺设计。
7)用机床(或数控机床)对零件进行制造加工。8)装配,试车。2.本课程的主要内容
1)工程力学基础;2)机械工程材料基础;
3)常用机构与机械传动;4)联接与支承零部件;5)液压传动。
思考题与习题
O-1为什么机器中要用机构?机器与机构的根本区别是什么?0-2辨别自行车、机械式手表、汽车、台虎钳等何为机器?何为机构?
第一篇工程力学基础
第一章静力学概要
一、教学目标与要求
1、了解力的两种效应和力的三要素
2、了解静力学的基本力学规律,本书要求掌握静力学的四个基本公理。3.了解受力图的基本画法4.了解力矩和力偶的基本概念
二、学习重点和难点
1、学习重点1)。了解力的两种效应和力的三要素2)。了解静力学的基本力学规律,本书要求掌握静力学的四个基本公理。2.学习难点1)。了解受力图的基本画法2)。了解力矩和力偶的基本概念
三、教学方法
讲授法、演示法、案例分析法和相互讨论法为主
四、讲授课时8课时
如图1—1所示,在对工程实际对象(如汽车、船舶、机床、卫星等)进行力学分析时,首先要把它理想化,即合理抽象为力学模型,这样才便于进行数学描述,得到数学模型。这一过程也简称为“建模”。然后进行计算,一般用计算机数值求解。随后,对得出结果加以分析,特别要与实验结果相比较,如误差符合要求,则结束分析,如误差大,往往要修改力学模型再分析。由此可见,力学模型直接决定计算结果的正确性,它是力学分析的基础,十分重要。
静力分析的常用模型为刚体。实际物体在受力作用时,其内部各质点间的相对距离总要发生一定的伸长或缩短,即变形。由于这种变形通常十分微小,在对某些问题的研究中可以忽略不计,因此引入“刚体”这一为分析方便而假设的力学模型。所以说,刚体是在力作用下不变形的物体。
这些就是“《机械设计基础》课件通用模板”的内容了,有需要的朋友可以根据实际情况对这些模板进行参考和借鉴。机械设计的应用范围广泛,它是现代工程技术中不可或缺的一部分。