完全平方公式教学设计范文(精选5篇)
完全平方公式教学设计范文篇1
一、学习目标
会运用完全平方公式进行一些数的简便运算
二、学习重点
运用完全平方公式进行一些数的简便运算
三、学习难点
灵活运用平方差和完全平方公式进行整式的简便运算
四、学习设计
(一)预习准备
(1)预习书p26-27
(2)思考:如何更简单迅捷地进行各种乘法公式的运算?[
(3)预习作业:1.利用完全平方公式计算
(1)(2)(3)(4)
2.计算:
(1)(2)
(二)学习过程
平方差公式和完全平方公式的逆运用
由反之
反之
1、填空:
(1)(2)(3)
(4)(5)
(6)
(7)若,则k=
(8)若是完全平方式,则k=
例1计算:1.2.
现在我们从几何角度去解释完全平方公式:
从图(1)中可以看出大正方形的边长是a+b,
它是由两个小正方形和两个矩形组成,所以
大正方形的面积等于这四个图形的面积之和.
则S==
即:
如图(2)中,大正方形的边长是a,它的面积是;矩形DCGE与矩形BCHF是全等图形,长都是,宽都是,所以它们的面积都是;正方形HCGM的边长是b,其面积就是;正方形AFME的边长是,所以它的面积是.从图中可以看出正方形AEMF的面积等于正方形ABCD的’面积减去两个矩形DCGE和BCHF的面积再加上正方形HCGM的面积.也就是:(a-b)2=.这也正好符合完全平方公式.
例2.计算:
(1)(2)
变式训练:
(1)(2)
(3)(4)(x+5)2–(x-2)(x-3)
(5)(x-2)(x+2)-(x+1)(x-3)(6)(2x-y)2-4(x-y)(x+2y)
拓展:1、(1)已知,则=
(2)已知,求________,________
(3)不论为任意有理数,的值总是()
A.负数B.零C.正数D.不小于2
2、(1)已知,求和的值。
(2)已知,求的值。
(3).已知,求的值
回顾小结
1.完全平方公式的使用:在做题过程中一定要注意符号问题和正确认识a、b表示的意义,它们可以是数、也可以是单项式,还可以是多项式,所以要记得添括号。
2.解题技巧:在解题之前应注意观察思考,选择不同的方法会有不同的效果,要学会优化选择。
完全平方公式教学设计范文篇2
课题:第十章二元一次方程组课时分配本课(章节)需1课时
本节课为:第1课时
为本学期:总第课时
练习课
目标:
1、这一章的学习,使学生掌握二元一次方程组的解法。
2、学会解决实际问题,分析问题能力有所提高。
重点:这一章的知识点,数学方法思想。
难点:实际应用问题中的等量关系。
方法讲练结合、探索交流课型新授课教具投影仪
全章小结
四人一小组,互相交流学习这一章的感觉,主要学习了哪些知识。还有不懂的方面?感到困难的部分是什么?
方案<一>基本练习题
1、下列各组x,y的值是不是二元一次方程组的解?
(1)(2)(3)
2、根据下表中所给的x值以及x与y的关系式,求出相应的y值,然后填入表内:
x12345678910
Y=4x
Y=10-x
根据上表找出二元一次方程组的的解。
3、已知二元一次方程组的解
求a,b的值。
4、解二元一次方程
(1)(2)
方案〈二〉
1.根据已知条件,求出y的值,分别填入下列各图中,并找出方程组的解。
2.写出一个二元一次方程,使得都是它的解,并且求出x=3时的方程的解。
3.已知三角形的周长是18cm,其中两边的和等于第三边的2倍,而这两边的差等与第三边的,求这个三角形的各边长。
设三边的长分别是xcm,ycm,zcm
那么你会解这个方程组吗?
方案〈三〉
1、有甲、乙两种铜银合金,甲种含银25%,乙种含银37.5%,现在要熔成含银30%的合金100千克,这两种合金各取多少千克?
2、甲、乙两地之间路程为20km,A,B两人同时相对而行,2小时后相遇,相遇后A就返回甲地,B仍向甲地前进,A回到甲地时,B离甲地还有2km,求A,B两人速度。
3、小亮在匀速行驶的汽车里,注意到公路里程碑上的数是两位数;1h后看到里程碑上的数与第一次看到的两位数恰好颠倒了数字顺序;再过1h后,第三次看到的里程碑上的数字又恰好是第一次见到的数字的两位数的数字之间添加一个0的三位数,这3块里程碑上的数各是多少?
教学素材:
A组题:
1.已知x+y+(x-y+3)2=0,求x,y的值。
2.若3m-2n-7=0,则6n-9m-6是多少?
3.解方程组
(1)
(2)
4、用白铁皮做盒子,每张铁皮可生产12个盒身或18个盒盖,现有49张铁皮,怎样安排生产盒身和盒盖的铁皮张数,才使生产的盒身与盒盖配套(一张铁皮只能生产一种产品,一个盒身配两个盒盖)?
5、给定两数5与3,编一道通过列出二元一次方程组来求解的应用题,并使得这个方程的解就是这两个数。
B组题:
1、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售,每吨可获取利润500元,制成酸奶销售,每吨可获利润1200元,制成奶片销售,每吨可获利润2000元,该工厂的生产能力为:如制成酸奶,每天可加工3吨,制成奶片每天可加工1吨,受人员限制,两种加工方式不能同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕,为此,该加工厂设计了两种可行性方案:
方案一:尽可能多的制成奶片,其余直接销售鲜牛奶。
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成。
你认为选择哪种方案获利最多,为什么。
2、在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为,
(1)甲把a看成了什么,乙把b看成了什么
(2)求出原方程组的正确解。
学生充分发表意见再根据学生的意见采用方法。
学生板演
作业P103910
P1241314
板书设计
方案一方案二方案三
完全平方公式教学设计范文篇3
一、内容分析
完全平方公式是七年级下册8.3的内容。乘法公式是在学习了单项式乘法、多项式乘法之后学习的,是特殊形式多项式乘法结果的一种归纳和总结,并且将这种结果应用于形式相同的多项式相乘,达到简化计算的目的,乘法公式是初中代数中运用推理方法进行代数式恒等变形的开端也是学习因式分解和分式运算的重要基础。
二、教学目标:
1、能根据多项式的乘法推导出完全平方公式;
2、理解并掌握完全平方公式,并能进行计算;
3、进一步体会转化、数形结合等思想方法。
三、教学重难点
重点:体会公式的发现和推导过程
难点:能运用公式进行简单的计算
四、教学过程设计
教学过程:
(-)导入新课:
请同学们回忆多项式乘法法则并用多项式的乘法法则计算:
(a+b)2=
(a-b)2=
说明:
乘法公式实际是几个特殊形式的多项式乘法结果,让学生知道公式的来历.
多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.
(二)新课讲解:
总结:上述两个公式可以直接用于计算.我们把①和②称为完全平方公式.
思考:你能用语言表述这两个公式吗?
语言叙述:
完全平方公式的语言叙述:两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.
口诀:首平方,尾平方,首尾乘积2倍放中央。
几何意义:
两个数的和的平方相乘
两个数的差的平方相乘
观看洋葱视频:《完全平方公式》
观看洋葱视频的目的:洋葱视频以动画的方式,诙谐幽默的语言讲解枯燥乏味的知识点,可以吸引学生的学习兴趣,让学生可以沉浸其中,积极主动学习。
三、巩固练习
观看完视频之后分别给出问题1、2、3
教师活动:根据问题的难易程度点名让学生回答问题,简单的题可以点名基础较差的后进生,难度较大的题点名基础比较好的同学。
目的:让每个学生都能参与到这个教学活动中来,根据不同学生的认知水平、学习能力以及自身素质,选择适合每个学生特点的学习方法来有针对性的教学,发挥学生的长处,弥补学生的不足,激发学生学习的兴趣,树立学生学习的信心。
教师活动:分步演示计算过程
学生活动:学习完全平方公式的应用,明确字母a,b在式子中具体表示什么。
四、目标回顾
教师活动:请同学们回顾本节课学习了哪些内容?有哪些收获
学生活动:经历思考和讨论后,用自己的语言回答
设计意图:让学生反思自己的学习过程,梳理本节课的知识。
五、布置作业
1.必做作业:
课本第69页的练习第一题和第71页的习题8.3的第1题
2.选做作业:
已知x+y=3,xy=1.求x
教学反思:
本节课通过多项式乘法推导出完全平方公式,让学生自己总结出完全平方公式的特征,注意不要出现漏掉中间那项的错误,为帮助学生记忆完全平方公式,可采用如下口诀:首平方,尾平方,首尾乘积两倍放中央.教学中,教师可通过判断正误等习题强化学生对完全平方公式的理解记忆。
完全平方公式教学设计范文篇4
总体说明:
完全平方公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结.同时,完全平方公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过完全平方公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处.而且完全平方公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算、解一元二次方程以及二次函数的恒等变形的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用.因此学好完全平方公式对于代数知识的后继学习具有相当重要的意义.
本节是北师大版七年级数学下册第一章《整式的运算》的第8小节,占两个课时,这是第一课时,它主要让学生经历探索与推导完全平方公式的过程,培养学生的符号感与推理能力,让学生进一步体会数形结合的思想在数学中的作用.
一、学生学情分析
学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础.
学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.
二、教学目标
知识与技能:
(1)让学生会推导完全平方公式,并能进行简单的应用.
(2)了解完全平方公式的几何背景.
数学能力:
(1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力.
(2)发展学生的数形结合的数学思想.
情感与态度:
将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”.
三、教学重难点
教学重点:1、完全平方公式的推导;
2、完全平方公式的应用;
教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;
2、完全平方公式结构的认知及正确应用.
四、教学设计分析
本节课设计了十一个教学环节:学生练习、暴露问题——验证——推广到一般情况,形成公式——数形结合——进一步拓广——总结口诀——公式应用——学生反馈——学生PK——学生反思——巩固练习.
第一环节:学生练习、暴露问题
活动内容:计算:(a+2)2
设想学生的做法有以下几种可能:
①(a+2)2=a2+22
②(a+2)2=a2+2a+22
③正确做法;
针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢?怎么验证?
活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:
(a+2)2=a2+22,如果不将这种定式思维*,就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔.
第二环节:验证(a+2)2=a2–4a+22
活动内容:(a+2)2=(a+2)•(a+2)=a2+2a+2a+22
活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”.
第三环节:推广到一般情况,形成公式
活动内容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2
活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐.
第四环节:数形结合
活动内容:设问:在多项式的乘法中,很多公式都都可以用几何图形进行解释,那么完全平方公式怎样用几何图形解释呢?
展示动画,用几何图形诠释完全平方公式的几何意义.
学生思考:还有没有其它的方法来诠释完全平方公式?(课后思考)
活动目的:让学生进一步认识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想.
第五环节:进一步拓广
活动内容:推导两数差的完全平方公式:(a–b)2=a2–2ab+b2
方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2
方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2
活动目的:让学生经历由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由第二种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用.
第六环节:总结口诀、认识特征
活动内容:比较两个公式的共同点与不同点:(a+b)2=a2+2ab+b2
(a–b)2=a2–2ab+b2
特征:①左边都是一个二项式的完全平方,两者仅有一个符号不同;右边都是二次三项式,其中第一、三项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的两倍,两者也仅一个符号不同;
②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式)
口诀:首平方,尾平方,首尾相乘的两倍在中央.
活动目的:认识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避免学生在应用该公式中出现错误.
第七环节:公式应用
活动内容:例:计算:①(2x–3)2;②(4x+)2
解:①(2x–3)2=(2x)2–2•(2x)•3+32=4×2–12x+9
②(4x+)2=(4x)2+2•••••(4x)()+()2=16×2+2xy+
活动目的:在前几个环节中,学生对完全平方公式已经有了感性认识,通过本环节的讲解以及下一环节的练习,使学生逐步经历认识——模仿——再认识.从而上升到理性认识的阶段.
第八环节:随堂练习
活动内容:计算:①;②;③(n+1)2–n2
活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的理解是否到位,完全平方公式的应用是否得当,以便教师能及时地进行查缺补漏.
第九环节:学生PK
活动内容:每个学生各出五道完全平方公式的计算题给自己的同桌解答,比一比谁的准确性率高,速度快.
活动目的:活跃课堂气氛,激起学生的好胜心,进一步巩固学生对完全平方公式的理解与应用.
第十环节:学生反思
活动内容:通过今天这堂课的学习,你有哪些收获?
收获1:认识了完全平方公式,并能简单应用;
收获2:了解了两数和与两数差的完全平方公式之间的差异;
收获3:感受到数形结合的数学思想在数学中的作用.
活动目的:通过对一堂课的归纳与总结,巩固学生对完全平方公式的认识,体会数学思想的精妙.
第十一环节:布置作业:
课本P43习题1.13
完全平方公式教学设计范文篇5
内容:8.3完全平方公式与平方差公式(2)P64–67
课型:
新授日期:
学习目标:
1、经历探索平方差公式的过程,发展学生观察、交流、归纳、猜测、验证等能力。
2、会推导平方差公式,了解公式的几何背景,会用公式计算。
3、进一步体会数形结合的数学思想和方法。
学习重点:会推导平差方公式,并能运用公式进行简单的计算。
学习难点:掌握平方差公式的结构特征,理解公式中a、b的广泛含义。
学习过程:
一、学习准备
1、利用多项式乘以多项式计算:
(1)(a+1)(a-1)
(2)(x+y)(x-y)
(3)(3a+2b)(3a-2b)
(4)(0.2x+0.04y)(0.2x-0.04y)
观察以上算式及运算结果,你发现了什么?再举两例验证你的发现。
2、以上算式都是两个数的和与这两个的差相乘,运算结果是这两个数的平方的差。我们把这样特殊形式的多项式相乘,称为平方差公式,以后可以直接使用。
平方差公式用字母表示为:(a+b)(a-b)=a2-b2
尝试用自己的语言叙述平方差公式:
3、平方差公式的几何意义:阅读课本65页,完成填空。
4、平方差公式的结构特征:(a+b)(a-b)=a2-b2
左边是两个二项式相乘,两个二项式中的项有什么特点?右边的结果与左边的项有什么关系?
注意:公式中字母的含义广泛,可以是,只要题目符合公式的结构特征,就可以运用这一公式,可用符号表示为:(□+○)(□-○)=□2-○2
5、判断下列算式能否运用平方差公式。
(1)(x+y)(-x-y)(2)(-y+x)(x+y)
(3)(x-y)(-x-y)(4)(x-y)(-x+y)
二、合作探究
1、利用乘法公式计算:
(1)(2m+3)(2m-3)(2)(-4x+5y)(4x+5y)
分析:要分清题目中哪个式子相当于公式中的a(相同的一项),哪个式子相当于公式中的b(互为相反数的一项)
2、利用乘法公式计算:
(1)999×1001(2)
分析:要利用完全平方公式,需具备完全平方公式的结构,所以999×1001可以转化为()×(),可以转化为()×()
3、利用乘法公式计算:
(1)(x+y+z)(x+y-z)(2)(a-2b+3c)(a+2b-3c)
三、学习体会
对照学习目标,通过预习,你觉得自己有哪些方面的收获?又存在哪些方面的疑惑?
四、自我测试
1、下列计算是否正确,若不正确,请订正;
(1)(x+2)(2-x)=x2-4
(2)(2x+y2)(2x-y2)=2×2-y4
(3)(3×2+1)(3×2-1)=9×2-1
(4)(x+2)(x-3)=x2-6
2、利用乘法公式计算:
(1)(m+n)(m-m)+3n2(2)(a+2b)(a-2b)(a2+4b4)
(3)1007×993(4)(x+3)2-(x+2)(x-1)
4、先化简,再求值;
(-b+a)(a+b)+(a+b)2-2a2,其中a=3,b=
五、思维拓展
1、如果x2-y2=6,x+y=3,则x-y=
2、计算:20072-4014×2008+20082
3、计算:123462-12345×12347