根号怎么算的过程教学(精选5篇)

daniel 0 2024-04-27

根号怎么算的过程教学篇1

教学目的:

1、在二次根式的混合运算中,使学生掌握应用有理化分母的方法化简和计算二次根式;

2、会求二次根式的代数的值;

3、进一步提高学生的综合运算能力。

教学重点:在二次根式的混合运算中,灵活选择有理化分母的方法化简二次根式

教学难点:正确进行二次根式的混合运算和求含有二次根式的代数式的值

教学过程:

一、二次根式的混合运算

例1计算:

分析:(1)题是二次根式的加减运算,可先把前三个二次根式化最简二次根式,把第四式的分母有理化,然后再进行二次根式的加减运算。

(2)题是含乘方、加、减和除法的混合运算,应按运算的顺序进行计算,先算括号内的式子,最后进行除法运算。注意的计算。

练习1:P206/8–①P207/1①②

例2计算

问:计算思路是什么?

答:先把第一人的括号内的式子通分,把第二个括号内的式子的分母有理化,再进行计算。

二、求代数式的值。注意两点:

(1)如果已知条件为含二次根式的式子,先把它化简;

(2)如果代数式是含二次根式的式子,应先把代数式化简,再求值。

例3已知,求的值。

分析:多项式可转化为用与表示的式子,因此可根据已知条件中的及的值。求得与的值。在计算中,先把及的式了有理化分母。可使计算简便。

例4已知,求的值。

观察代数式的特点,请说出求这个代数式的值的思路。

答:所求的代数式中,相减的两个式子的分母都含有二次根式,为化去它们的分母中的根号,可以分别先把各自的分母有理化或进行]通分,把这个代数式化简后,再求值。

三、小结

1、对于二次根式的混合混合运算。应根据二次根式的加、减、乘除和乘方运算的顺序进行,即先进行乘方运算,再进行乘、除运算,最后进行加、减运算。如果有括号,先进行括号内的式子的运算,运算结果要化为最简二次根式。

2、在代数式求值问题中,如果已知条件所求式子中有含二次根式(或分式)的式子,应先把它们化简,然后再求值。

3、在进行二次根式的混合运算时,要根据题目特点,灵活选择解题方法,目的在于使计算更简捷。

四、作业

P206/7P206/8—②③

根号怎么算的过程教学篇2

一、指导思想

按照课程标准的要求,数学教学要面向全体学生,使人人都获得现代公民必需的基本的数学知识与技能,同时又使不同的人得到不同的发展;教学中要体现学生主动学习的过程,以学生发展为本,让学生亲身参与活动,进行探索与发现,以自己的体验获取知识与技能。

另一方面,教材的编写者也为我们提供了一套良好的素材。教材注意从学生熟悉的情境入手引入数学知识,注意引导和启发学生的思考、实践和探索。认真把握好教材的体系和意图,有利于我们教师进一步发挥创造性,使生动的教材变成生动的课堂,使学生真正学到有意义、有价值的数学知识,得到提出问题、分析问题、解决问题的初步锻炼。

这些都为我们具体的课堂教学提供了有力的依据。

二、教材分析

1.教材的地位作用分析:

《数的开方》这一章的主要内容有两节:平方根与立方根;实数与数轴。

一方面,平方根、立方根概念的产生,既是生产实际的需要,也是由于数字本身运算的需要。通过平方根与立方根的学习,引进了一种新的运算——开方,它与乘方互为逆运算,从而完备了初等代数中六种基本的代数运算(加、减、乘、除、乘方、开方)。这对代数内容的学习的着重要的意义。

另一方面,通过数的开方运算,引进无理数的概念,从而将数的概念从有理数扩张到了实数。实数是进一步学习数学的基础,实数与数轴上的点是一一对应的。学习实数的重要意义在于:在实数范围内可以更好地建立数与形的联系,并利用这种联系解决有关问题。

2.教学目标:

本章的教学目标是:

(1)让学生经历又一次数系扩张的过程,进一步体验数学的发展源于实际,又作用于实际的辩证关系。

(2)理解平方根、算术平方根、立方根的概念;认识平方与开平方、立方与开立方间的关系,会用平方、立方的概念求某些数的平方根与立方根,并会用根号表示;会用计算器求一个非负数的算术平方根及任意一个数的立方根。

(3)了解无理数和实数的概念,知道实数与数轴上的点一一对应。

(4)能估计某些无理数的大小,培养学生的数感与估算能力,会进行简单的实数运算。

3.重点、难点、关键点:

(1)重点:平方根、算术平方根、立方根的概念;实数的概念。

(2)难点:平方根符号的建立;无理数概念的理解。

(3)关键点:掌握平方根、算术平方根、立方根的意义是学好本章的关键。

在教学中要引导学生自己去发现规律并用自己的语言加以表达,从而加深对相关概念的认识;要通过计算器的演算,图形面积的拚割对无理数概念的形成提供具体的情境。

有关于根号怎么算的过程教学,二次根式的教学设计内容分享就到这里了,希望这些参考教案可以帮助大家解决问题,我们下期内容分享再见了。

根号怎么算的过程教学篇3

一、教学过程

(一)复习提问

1.什么叫二次根式?

2.下列各式是二次根式,求式子中的字母所满足的条件:

(3)∵x取任何值都有2×2≥0,所以2×2+1>0,故x的取值为任意实数.

(二)二次根式的简单性质

上节课我们已经学习了二次根式的定义,并了解了第一个简单性质

我们知道,正数a有两个平方根,分别记作零的平方根是零。引导学生总结出,其中,就是一个非负数a的算术平方根。将符号看作开平方求算术平方根的运算,看作将一个数进行平方的运算,而开平方运算和平方运算是互为逆运算,因而有:

这里需要注意的是公式成立的条件是a≥0,提问学生,a可以代表一个代数式吗?

请分析:引导学生答如时才成立。

时才成立,即a取任意实数时都成立。

我们知道

如果我们把,同学们想一想是否就可以把任何一个非负数写成一个数的平方形式了.

例1计算:

分析:这个例题中的四个小题,主要是运用公式。其中(2)、(3)、(4)题又运用了整式乘除中学习的积的幂的运算性质.结合第(2)小题中的,说明,这与带分数。因此,以后遇到,应写成,而不宜写成。

例2把下列非负数写成一个数的平方的形式:

(1)5;(2)11;(3)1。6;(4)0。35.

例3把下列各式写成平方差的形式,再分解因式:

(1)4×2—1;(2)a4—9;

(3)3a2—10;(4)a4—6a2+9

解:(1)4×2—1

=(2x)2—12

=(2x+1)(2x—1)

(2)a4—9

=(a2)2—32

=(a2+3)(a2—3)

(3)3a2—10

(4)a4—6a2+32

=(a2)2—6a2+32

=(a2—3)2

(三)小结

1.继续巩固二次根式的定义,及二次根式中被开方数的取值范围问题.

2.关于公式的应用。

(1)经常用于乘法的运算中.

(2)可以把任何一个非负数写成一个数的平方的形式,解决在实数范围内因式分解等方面的问题.

(四)练习和作业

练习:

1.填空

注意第(4)题需有2m≥0,m≥0,又需有—3m≥0,即m≤0,故m=0.

2.实数a、b在数轴上对应点的位置如下图所示:

分析:通过本题渗透数形结合的思想,进一步巩固二次根式的定义、性质,引导学生分析:由于a<0,b>0,且|a|>|b|.

3.计算

二、作业

教材P.172习题11.1;A组2、3;B组2.

补充作业:

下列各式中的字母满足什么条件时,才能使该式成为二次根式?

分析:要使这些式成为二次根式,只要被开方式是非负数即可,启发学生分析如下:

(1)由—|a—2b|≥0,得a—2b≤0,

但根据绝对值的性质,有|a—2b|≥0,

∴|a—2b|=0,即a—2b=0,得a=2b.

(2)由(—m2—1)(m—n)≥0,—(m2+1)(m—n)≥0

∴(m2+1)(m—n)≤0,又m2+1>0,

∴m—n≤0,即m≤n.

说明:本题求解较难些,但基本方法仍是由二次根式中被开方数(式)大于或等于零列出不等式.通过本题培养学生对于较复杂的题的分析问题和解决问题的能力,并且进一步巩固二次根式的概念.

根号怎么算的过程教学篇4

教学目的

1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;

2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。

教学重点

最简二次根式的定义。

教学难点

一个二次根式化成最简二次根式的方法。

教学过程

一、复习引入

1.把下列各根式化简,并说出化简的根据:

2.引导学生观察考虑:

化简前后的根式,被开方数有什么不同?

化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

3.启发学生回答:

二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?

二、讲解新课

1.总结学生回答的内容后,给出最简二次根式定义:

满足下列两个条件的二次根式叫做最简二次根式:

(1)被开方数的因数是整数,因式是整式;

(2)被开方数中不含能开得尽的因数或因式。

最简二次根式定义中

第(1)条说明被开方数不含有分母;分母是1的例外。

第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。

2.练习:

下列各根式是否为最简二次根式,不是最简二次根式的说明原因:

3.例题:

例1把下列各式化成最简二次根式:

例2把下列各式化成最简二次根式:

4.总结

把二次根式化成最简二次根式的根据是什么?应用了什么方法?

当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。

当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。

此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。

三、巩固练习

1.把下列各式化成最简二次根式:

2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。

根号怎么算的过程教学篇5

教学目的

1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;

2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。

教学重点

最简二次根式的定义。

教学难点

一个二次根式化成最简二次根式的方法。

教学过程

一、复习引入

1.把下列各根式化简,并说出化简的根据:

2.引导学生观察考虑:

化简前后的根式,被开方数有什么不同?

化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

3.启发学生回答:

二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?

二、讲解新课

1.总结学生回答的内容后,给出最简二次根式定义:

满足下列两个条件的二次根式叫做最简二次根式:

(1)被开方数的因数是整数,因式是整式;

(2)被开方数中不含能开得尽的因数或因式。

最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。

2.练习:

下列各根式是否为最简二次根式,不是最简二次根式的说明原因:

3.例题:

例1把下列各式化成最简二次根式:

例2把下列各式化成最简二次根式:

4.总结

把二次根式化成最简二次根式的根据是什么?应用了什么方法?

当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。

当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。

此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。

三、巩固练习

1.把下列各式化成最简二次根式:

2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。

  • 下一篇:小学四年级我学会了什么作文字(整理4篇)
    上一篇:护士年度总结,专科护士年度总结(整理9篇 )
    相关文章