卷积神经网络设计原则(整理2篇)

daniel 0 2026-01-10

卷积神经网络设计原则范文篇1

关键词:手写数字识别;卷积神经网络;应用

手写体数字识别在邮政、金融等领域应用广泛。对于数字识别,人们往往要求识别器有很高的识别可靠性,数字识别的错误所带来的影响比文字识别等其他识别所带来的影响更大,特别是有关金融方面的数字识别错误所带来的后果是无法想象的,识别错一个数字,这其中的差距可能是几的差距,也可能是几十、几百的差距,这些都还是小问题;但更有可能这一个数字代表的差距是几万、几千万甚至几亿乃至更多,那么这个错误造成的损失就无法估量了。因此,O计出有着高可靠性与高识别率的数字识别系统已经成为了字符识别领域一个非常重要的环节。

1网络模型和数据库及学习算法的选择

1.1关于Mnist数据库的介绍

首先,Mnist是NIST数据库的一个优化子集。它是一个有着60000个训练样本集与10000个测试样本集的手写体数字数据库。此数字库一共有4个文件。

此数字库的所有样本集都有图像文件以及标签文件。标签文件的作用是用来储存样本集中的每个样本的数值标签,而每一个样本的图像数据信息则是由图像文件存储着。此数据库的图像数据均保存在二进制文件之中,且每个样本图像的大小均为28*28。

1.2数字识别的模型选择

手写体数字虽然只有0~9十个数字,但由于写法因人而异,不同地域同样一个数字有多种不同的写法,每个人都有自己的书写习惯。且一些纸质差异、笔画粗细、光线问题、位置、尺度大小等等多种因素都能对输入产生影响。考虑到这些因素,为让网络有良好的识别能力,我们这里采用在图像识别领域有着优秀表现的卷积神经网络作为此数字识别系统的训练模型。

1.3学习算法的选择

一个优秀的网络模型必须具备良好的学习算法,每个学习网络都有着相对来说较为合适自己的学习算法,而并不是说越高端的算法就越好。在此文中,我选择的学习算法是较为成熟的BP算法。此算法在文字前面有些许介绍,此处不再多做说明。

2基于卷积神经网络的数字识别系统的设计

2.1输入层以及输出层设定

根据样本的特征与此网络的网络结构,可以大概判断出输入层与输出层该如何设置。隐含层的个数可以是一个,也可以是多个,这与要分类的问题有关。

前文提及到在mnist数据库中,所有的图像都是28*28大小的,且以整个图片的像素形式存储在数据文件之中。每张图像大小为28*28,故一个图片像素点个数为784个。这里,卷积神经网络的输入即为这784个像素点。

因为数字识别需要识别的是0~9这十个数字,即需要识别十种字符类别,所以将这个神经网络输出层的神经元节点数设置为10。

2.2网络的中间层设置

卷积神经网络的中间层有两个部分,即卷积层(特征提取层)与下采样层(特征映射层),由第二章中图2-1所示,C1、C3为卷积层,S2、S4为降采样层。

1)激活函数选择

激活函数选择sigmoid函数。同样,在第二章有所提及。Sigmoid函数是严格递增函数,能较好的平衡线性与非线性之间的行为,比较贴近生物神经元的工作。相比于其他函数,sigmoid函数还存在着许多优势,比如光滑性、鲁棒性以及它的导数可以用它自身来表示。

sigmoid函数为:

(1)

其中,x为神经元净输入。

激活函数导数为:

(2)

2)卷积层设计

图像经过卷积核对特征图进行卷积,之后再经过sigmoid函数处理在卷积层得到特征映射图。特征映射图相比于原图像,其特征更为明显突出。

卷积运算其实就是一个加权求和的过程。离散卷积是本文所选取的方法,规定卷积核在水平和竖直两个方向每次都是移动一个像素,即卷积的步长为1。

3)下采样层的设计

根据图像局部相关性这一原理,为了降低网络的学习维度、减少需要处理的数据量且保留图像的有用信息,可以对卷积后的图像进行下采样。这里,我们采取的是取卷积层4个像素点平均值为下采样层的一个像素点的方法。这样可以降低网络规模。

2.3网络总体结构CNN-0

根据LeNet-5结构,再结合上文中的对输入层、输出层、中间层的设计,完成了如图3-1所示的基本网络结构:

相比于LeNet-5,CNN-0做了一些修改,并非完全按照LeNet-5网络结构模型。Sigmoid函数是本网络中的激活函数,选择这个函数的好处在于可以让所有层得到的输出都在区间[-1,1]之内。网络训练的学习率固定值为1或者是衰减的学习速率。经过卷积后的一维向量与输出层没有沿用LeNet-5的径向基函数网络,而是采取全连接方式,省去了F6层。

3.3卷积神经网络训练过程

在模式识别中,学习网络有无指导学习网络与有指导学习网络两个类别。无指导学习网络一般是用来进行聚类分析,本文采取的是有指导学习网络。

卷积神经网络其实就是从输入到输出的一种映射,它可以学量的映射关系,只需要用现有的模式对网络进行训练,网络就能具备映射能力。而不需要输入与输出之间的精确的关系。

训练算法与传统的BP算法相差无几(BP算法在第二章有做概述),主要可分为四个步骤,而这四个步骤可以归为向前传播阶段与向后传播阶段:相前传播:

1)随机的从样本集中获取一个样本(A,),然后将A输入至网络中;

2)根据公式(3)计算出实际输出:

(3)

向后传播:

1)计算和理想输出之间的差;

2)根据极小化误差方法调整权值矩阵。

结语

在手写数字识别这一块,相对来说比较有难度的应该就是脱机自由手写字符识别了,不过本文所研究的并不是这一系统,本设计是一个基于卷积神经网络的手写数字识别系统,因卷积神经网络的局部感受野和降采样以及权值共享、隐性特征提取等优点,它在图像识别领域得到了非常广泛的应用。此程序是在Caffe这个框架上进行运行的,操作系统为Linux系统ubuntu14.04版本。Caffe是一个开源的深度学习框架,也可以说是一个编程框架或者模板框架,它提供一套编程机制。因此,本文所需要实际的卷积神经网络就可以根据这个框架来进行构建。

参考文献:

[1]张伟,王克俭,秦臻.基于神经网络的数字识别的研究[J].微电子学与计算,2006年第23卷第8期.

卷积神经网络设计原则范文篇2

在工作运行中,还存在一些不可忽视的问题,主要表现在:

(一)网络建设整体运行水平和质量不高,如信息反馈不及时、四员互控能力不强、特别是在线扣款落实力度不大,处于全市落后名次,有待进一步提高。

(二)卷烟结构不够优化,一、二类烟、省外烟需要进一步加大促销力度,在不同程度上制约了太康卷烟销售工作有效开展。

(三)思想认识存在问题。有安于现状、干劲不够足、眼光狭隘、胸怀不够宽,束手无策、办法不够多等落后思想观念。

二、造成工作被动的原因:

一是思想认识问题没有真正解决,主观努力不够,存在被动应付问题;二是工作中谋划、组织不力,推动工作的力度不够,积极应对、克服困难的办法欠缺;三是从职工队伍素质看,有的精神状态不佳,没有进取意识,有的作风不扎实,没有创新意识。个别营销人员的工作积极性、主动性不高,货源向商户公开不及时,个别品牌宣传不到位,服务不完善,在品牌的市场培育工作方面欠缺。

三、推进卷烟上水平具体工作措施

针对存在问题,在下一步工作中我们将采取切实有效的措施,认真加以克服和解决,重点抓好以下工作:

一是狠抓作风建设。按照国家局提出的“四要”作风要求和市局提出的“六个反对、六个提倡”的工作要求,结合正在开展的机关作风建设活动,在干部职工中认真开展思想作风纪律大整顿,切实解决干部职工满足现状、标准不高,精神不佳、状态不好的问题,力求思想观念更新,纪律意识增强,工作作风改观,以更高的目标、更实的作风和更加良好的精神状态,促进“卷烟上水平”各项工作顺利开展。

二是稳增卷烟销量。继续把销量稳定增长作为经济运行调控的首要指标,摆在突出位置,量化分解任务,加大考核奖惩,增强全员责任感、压力感。认真研究和分析我县卷烟市场状况和客户资源,及时把握市场需求和消费潜力,密切关注市场走势,适时研究制订并实施应对措施,全力以赴确保卷烟销量稳步增长。把农村市场扩销为重点,提高服务市场、营销水平,深挖市场潜力,努力扩增销量。认真做好零售客户业态分类,精心培育有效客户,发展提升核心客户,为销量增长提供保证

三是注重结构转型。把品牌培育作为实现卷烟销售结构优化上水平的重要措施,完善品牌培育规划和推进计划,发挥市场经理和客户经理职能,做好客户宣传引导工作,使重点品牌培育有实质性进展。继续推进“两转一扩”,狠抓城区高档消费场所和乡镇集贸市场的销售,专卖部门加大对这些场所的管理,与公安部门配合,搞好宣传检查,对符合办证条件的尽快办证入网。充分调动一切积极因素,努力扩销一、二类烟,着力提升销售结构。

四是提升网建水平。针对我们网建基础薄弱的实际,借鉴先进单位经验,大力推进网上订货、在线代扣工作,加大宣传力度,积极与邮政部门搞好协调,实行“责任到人、服务到户”的工作原则,充分调动客户经理工作积极性、主动性,提高办事效率和服务质量,切实提高卷烟货款在线代扣率。同时,保质保量完成村村通网络工程任务,认真抓好按订单组织货源工作,切实增强网络建设软实力。

  • 下一篇:卷积在神经网络中的作用(整理2篇)
    上一篇:黄姜的种植方法及栽培技术(整理2篇)
    相关文章
    1. 校园足球培训方案 校园足球培训

      篇一:校园足球师资培训计划校园足球师资培训计划为全面贯彻落实****、李克强总理关于抓好青少年足球,加强学校体育工作的重要指示,进

      栏目名称:常用范文 0 2026-01-10