化工废渣的处理技术(收集3篇)

daniel 0 2025-11-25

化工废渣的处理技术范文篇1

关键词:dh高效污水净化器;高浓度灰渣水;灰渣水处理;回用

0引言

火电厂除渣系统传统的处理方法是灰渣经碎渣机粉碎后,由炉底液下泵将灰渣水抽至脱水仓,使大部分灰渣在脱水仓内沉淀,灰渣由脱水仓底部运出。少部分渣与水经脱水仓溢流堰流至浓缩机沉淀,澄清水再循环使用。

现在大部分300mw以上电厂采用了刮板捞渣机直接上渣仓的运行方式。灰渣水大多经沉淀池、自清洗过滤器、板式换热器,然后循环使用;或采用浓缩机沉淀、微孔陶瓷板过滤方式。

在煤质情况良好,产生灰渣量较少的情况下,上述渣水处理方法均可以稳定运行。但若灰渣量大,悬浮物含量高,上述处理方法就无法正常运行,导致渣水浓度严重超标,给回用带来一定的困难,影响生产。

dh高效污水净化器技术的应用,使高浓度灰渣水的水质得到很大的改善,解决了灰渣水回用中的难题。

1电厂灰渣水及处理现状

火电厂的冲灰渣水悬浮物含量较高。一般情况下,经过脱水仓或捞渣机沉淀溢流后的ss浓度为2000~3000mg/l。如国华北京热电分公司的脱水仓溢流水实测为1900mg/l;大唐国际托克托发电有限责任公司的1号炉捞渣机溢流水实测为1750mg/l。

随着电煤供应紧张,燃煤价格居高不下,大部分火电厂燃煤中灰灰和杂质成分大幅上升,导致锅炉的排渣量和冲渣水量增加,渣水悬浮物含量高,并伴有大量不易沉淀的漂珠和浮灰。如贵州纳雍发电厂的渣水悬浮物含量高达9000mg/l以上,大唐国际王滩电厂的捞渣机溢流水悬浮物含量也高达6000mg/l以上,且废水中含有大量漂珠和浮灰,每天人工捕捞的漂珠和浮灰约800kg。

对全国大多数燃煤电厂来说,煤质状况变差,渣水循环系统负荷增大,是逐步需要面对的问题。

渣水悬浮物浓度高,负荷大,导致原有的渣水处理设施无法正常运行。如纳雍发电一厂采用浓缩机,二厂采用沉淀池处理灰渣水,导致出现浓缩机经常堵塞,沉淀池悬浮物去除率低等问题,无法正常运行,严重影响生产。大唐国际王滩电厂采用沉淀池、自清洗过滤器、板式换热器的处理方法,由于渣水悬浮物含量高且粒度细,自清洗过滤器频繁堵塞,每天需要人工清理过滤网;而且渣水对板式换热器产生严重磨损,导致板式换热器运行仅二三个月就出现漏水现象。

目前国内的渣水处理方法一般采用沉淀池、浓缩机、陶瓷滤砖池等处理方法,也有少数厂家采用絮凝沉淀+斜管+砂滤的方式。上述处理技术都存在各种各样的问题,在处理能力、运行稳定可靠性上还有所欠缺。如采用沉淀池工艺悬浮物去除率较低,出水水质差,占地面积大,清池频繁且工作量大;浓缩机要求入口悬浮物含量低,出水水质差,斜管(板)易堵塞需人工清理,排灰口立管易堵塞导致排泥不畅,常发生压耙事故;陶瓷滤砖池的占地面积大,需要人工清池和反冲洗,清池频繁,劳动强度大;絮凝沉淀+斜管+砂滤工艺,要求入口悬浮物含量低,需要配置庞大的预沉池,斜管(板)易堵塞,砂滤负荷大,需经常反冲洗,滤层易板结。上述几种工艺最大的问题是耐冲击负荷低,对于悬浮物ss3000mg/l,特别是对ss5000mg/l以上的灰渣水,无法正常处理。

在高悬浮物污水处理中,dh高效污水净化器显示了较大的技术优势。它无须设置预沉池,可以快速连续高效地将ss≤30000mg/l的污水净化到5~50mg/l,该技术最高可以处理ss≤90000mg/l的污水,为高浓度灰渣水处理开辟了一条新途径。

该项技术已经在国华北京热电分公司、贵州纳雍二电厂、大唐国际托克托发电有限责任公司、北京京丰燃气发电有限责任公司(渣水、煤水混合处理)开始使用,其优异的技术性能,简单合理的工艺路线,相信可以给火电厂的渣水处理带来一次革命。

2dh高效污水净化器的原理

dh高效污水净化器是将物理、化学反应有机融合在一起,集成了直流混凝、临界絮凝、离心分离、动态过滤及污泥浓缩沉淀技术,短时间内(25~30min)在同一罐体中完成废水快速多级净化的一体化组合设备。该设备ss去除率高达99.9%,cod去除率达到40%~70%。净化器为钢制罐体,上中部为圆柱体,下部为锥体,自下而上分别为污泥浓缩区、混凝区、离心分离区、动态过滤区、清水区。

直流混凝和临界絮凝技术取代了混凝反应池,在泵前及泵后投加絮凝和助凝药剂,利用泵、管道、水流完成药剂的水解、混合、压缩双电层,吸附中和作用后高速沿切线方向进入罐体快速完成吸附架桥,絮凝形成矾花。

离心分离是利用废水沿切线方向进入罐体产生高速旋流、产生离心力,在离心力的作用下废水中形成的悬浮颗粒及矾花被甩向器壁,并随下旋流及自身重力作用沿罐内壁下滑至锥形污泥浓缩区,废水向下作螺旋运动到一定程度后向中心靠拢,又形成向上的旋流,这股旋流水质较清,流向设置在上层动态过滤区。在离心分离区一般粒径大于20μm的悬浮颗粒(矾花)被固液分离至污泥浓缩区。废水经离心分离进入动态过滤区再次完成吸附作用,过滤区采用表面吸附的悬浮滤料,表面积大、吸附能力强,可截留5μm以上的粒径的悬浮物。在动态状态下过滤,因此滤料不易堵塞,吸附的颗粒物易脱落又下沉至离心分离区,因此滤料反洗周期长(0.5~1个月反冲洗一次)。废水经多级固液分离及净化后排出。

离心分离和过滤脱落的悬浮颗粒在离心力及重力的作用下进入污泥浓缩区,污泥在锥形泥斗区中上部经聚合力的作用下,颗粒群体结合成一整体,各自保持相对不变位置共同下沉,在泥斗区中下部ss很高,颗粒间将缝隙中液体挤出界面,固体颗粒被浓缩压密后从锥体底部排出,一般污泥含水率≤90%(排污量只有传统工艺的1/6)。

3dh高效污水净化器典型应用工艺及特点

对于国华北京热电分公司、贵州纳雍二电厂、大唐国际托克托发电有限责任公司、北京京丰燃气发电有限责任公司等厂的灰渣水改造和新建项目,根据电厂原有设施和现场条件,采用的工艺略有不同。但基本的工艺系统是一致的。下面以贵州纳雍二电厂4×300mw机组灰渣水处理工程为例,说明新技术的典型工艺系统(见图1)。

灰渣水处理系统选用3套dh-csq-200型高效(旋流)污水净化器(处理水量为每台200m3/h),为保证在事故或检修状况下不影响系统的正常运行,1套作为备用设备。捞渣机溢流水自流进排水槽(原有设施),排水槽用作调节池,调节池污水经渣浆泵提升,在泵后管道上设置混凝混合器,在混凝混合器前后分别投加絮凝剂、助凝剂,在管道中完成直流混凝反应,然后进入高效(旋流)污水净化器中,经离心分离、重力分离、动态把关过滤及污泥浓缩等过程,从净化器顶部排出经处理后的清水自流进入冷却塔,经冷却后水温度在30~35℃以下,然后进入到清水池,再经回用水泵送回,用于炉膛密封及捞渣机链条冷却。灰水处理产生的浓渣则进入污泥池,再用污泥泵打回捞渣机循环处理。

结合上述工艺流程和其他电厂设计、运行情况,该工艺具有以下特点:

(1)工艺流程短,故障率低,运行稳定可靠。

(2)处理能力强,效率高。设备处理负荷可达ss≤30000mg/l,最高可达≤90000mg/l;废水的设备停留时间≤30min。

(3)设备占地面积小:处理量为200m3/h的单台设备,直径仅为3.6m;无须配备预沉池,污水调节池、污泥池和清水池,可按普通过渡水池设计以节省占地面积。

(4)处理后的出水水质好ss=5~50mg/l,防止了冷却塔和水封槽集灰,并可回用于炉膛密封。

(5)采用plc控制,并和电厂辅控网连接,自动化程度高,工人劳动强度低。

(6)调节池和污泥池采用鼓风曝气,无须人工清池。

(7)采用冷却塔替代板式换热器,降低了工程造价,而且不需要大量循环冷却水。

(8)设备排污量少,污泥浓度高(ss230000mg/l),含水率低,可以根据情况采用以下几种处理方法:a.用压滤机压成泥饼外运;b.采用捞渣机系统的可以将污泥排至捞渣机或渣仓;c.采用脱水仓系统的可以将污泥打回脱水仓。

(9)若采用不带过滤层的净化设备,出水可达到≤150mg/l,设备本体可以免维护,减少维护工作量。

(10)在对王滩电厂含大量浮灰和漂珠的高浓度冲灰渣水进行为期9天设备小试试验中,绝大多数的浮灰和漂珠被絮凝沉淀下来;少数漂珠可从设备的漂珠排放口定期排出。

(11)设备运行只需一次提升,节省配套设备,节省电耗。

4设备实际运行及数据分析

4.1、1999年10月,南京慧邦科技研究所的第1套用于灰渣水处理的dh高效(旋流)污水净化器在国华北京热电分公司正式投运。该厂选用2台φ2800mm的dh高效污水净化器用于120m3/h冲灰渣废水的处理回用。单台处理能力为60m3/h,最大处理能力80m3/h,处理原水为浓缩机沉淀排出的灰渣水,水质浓度ss2000~3000mg/l,最大浓度ss10000mg/l,运行至今状况良好。经国华北京热电分公司测试,净化器进出水水质如表1所示。

4.2、2006年3月1日-3月9日,对大唐国际王滩电厂2×600mw机组1号炉含大量漂珠和浮灰的高悬浮物冲灰渣废水做了处理量为1t/h的小试设备实验,试验数据为:

(1)1号样(王滩电厂1号炉沉淀池原水):悬浮物55447mg/l

(2)2号样(王滩电厂小试设备出水):悬浮物24mg/l

(3)3号样(王滩电厂小试设备排泥水):悬浮物368668mg/l

设备悬浮物去除率为99.96%,设备承受住了极高悬浮物处理负荷的考验,运行稳定可靠。净化器污泥浓缩倍率为6.65倍。排放污泥实测高达368668mg/l。设备所排污泥含水率较低,浓度很高,有利于污泥的干化。净化器出水浊度见表2。试验结果得到了厂方的认可和赞赏。

4.3、2006年4月,大唐国际托克托发电有限责任公司2台处理能力为100m3/h的灰渣水处理净化器正式投入运行。经化学车间测试,净化器进出水水质见表3。

5结论

dh高效污水净化器用于火电厂浓灰渣水处理回用效果很好,设备运行安全、稳定、可靠、操作简便、滤料使用时间长、反冲洗周期达0.5~1个月一次,运行成本较低,具有显著的节水、节能及环境、社会、经济效益,和传统的处理工艺相比具有较大的技术优势。同时该净化器也已成功应用于多家火电厂工业废水和含煤废水的“零排放”项目,获得了用户好评。该净化器将为火电厂废水“零排放”,实现废物减量化、资源化、无害化的清洁生产发挥更大的作用。

参考文献:

[1]于水利,李圭白.高浊度水絮凝投药控制[m].大连:大连理工大学出版社,1997.

[2]于水利,李圭白.高浊度水絮凝投药自动控制系统模型试验研究[j].给水排水,1994(7).

[3]严煦世,范瑾初.给水工程[m].北京:中国建筑工业出版社,1999,276-278.

化工废渣的处理技术范文篇2

关键词:陶瓷废渣;能耗;低温快烧技术;坯体增强剂;绿色陶瓷

1引言

传统陶瓷产品虽然创造了人类需要的物质和精神财富,但是未能充分利用资源,且消耗大量能源,产生大量排放物,造成了较为严重的环境污染。绿色陶瓷是指合理利用自然资源,在生产制作过程中无环境污染、能耗低,使用时无害于人类健康的陶瓷产品。其在生产、使用、废弃和再生循环过程中与生态环境相协调,满足最少资源和能源消耗、最小或无环境污染、最佳使用性能、最高循环再利用率,并对人类的生活无毒害[1-3]。笔者所在公司经过三年的研究,完成了高掺量使用陶瓷砖废渣等固废物的课题,不但完全消化了本公司产生的废渣,而且还吸纳了社会上的陶瓷砖废渣,实现了陶瓷废渣全循环利用生产绿色陶瓷产品。

2研究方法

2.1识别陶瓷工业废渣的特性

目前,在陶瓷行业中应用的工业固体废弃物主要有各种工业尾矿、废渣、废料,如煤矸石、粉煤灰、赤泥、金矿尾砂、冶金矿渣、化工废渣、玻璃废料、陶瓷废料、耐火材料废料等[4]。陶瓷生产污水处理系统沉淀物,经压滤去水后形成的污水泥,其成分与陶瓷原料非常接近,只是混入了大量杂质,难于利用;坯体废料主要是指陶瓷制品煅烧前所形成的废料,包括上釉坯体废料及无釉坯体废料,此类废料经过分类处理,拣去杂物、除铁后可直接化浆加以循环利用;烧成废料是陶瓷制品经煅烧后生成的废料(通称陶瓷废砖),主要是烧成废品和在抛光、贮存、搬运中损坏的产品,这类废料需要经过粉碎加工,通过调整生产配方,掺入少量废料进行循环利用;瓷质砖及厚釉砖等经刮平定厚、研磨抛光及磨边倒角等一系列深加工,产生大量的抛光砖废渣,由于废渣中含有氯离子,加入配方中容易造成瓷砖针孔起泡,难以利用;废釉料、水洗泥加工、泥浆过筛等二次废渣,喷雾干燥塔燃烧的水煤浆废渣等,此类废渣成分复杂,难于利用;选矿废渣、煤气站废渣,此类废渣成分复杂,也难以循环利用,一直以填埋处理。

2.2废渣的管理和分类利用

2.2.1废渣按分类堆放、均化、加强检测、调整配料

首先控制废坯、废泥的来源稳定,通过多次抽样检测,发现废坯及废泥的化学成分和瓷质砖料相近,一般带有颜色,将颜色相近的集中堆放与陈腐,提高其可塑性并保证呈色的稳定;将废瓷砖按外观颜色分类堆放;泥浆过筛等二次废渣、水煤浆废渣经过检测,根据成分特性分类,加工成一定细度的粒子用作陶瓷坯体骨料,既降低了原材料成本,又减少因陶瓷工业废渣带来的污染,同时提高了瓷砖本身的艺术装饰效果。

2.2.2充分利用钙、镁特性,节约能耗

废渣中钙、镁含量一般比较高,在生产过程中可以充分利用其助熔特性,促进低温快速烧成,节约能耗;部分废泥陈腐时间较长,可以利用其粘性较好的特性提高坯体强度。

2.3配方研制与工艺技术参数

2.3.1原料的选用

对收集到的陶瓷废渣进行系统分类,具体分析它们的化学成分,一般陶瓷废渣的成分见表1。

配方中由于废渣含量比较多,需要适当增加泥的含量,以提高坯体强度;在烧成低温阶段适当放缓升温速度,以充分燃烧废渣中的有机物。坯料矿物配方组成见表2。

2.3.2粉料制备

对陶瓷废坯与白泥进行球磨,泥浆细度控制在250目筛余1.5%~3.0%,经喷雾干燥塔造粒;对陶瓷废砖粒进行机械粉碎,选择粒度在60~120目的颗粒;对粉煤灰、水洗泥残渣进行筛选,选择60~150目的颗粒;按配方配比计量输送至捞粒机内均匀混合捞粒,在捞粒过程中添加分散剂等添加剂,保证颗粒的均匀性;成形的工作压力控制在20~22MPa,压制周期为6~10次/min,干燥温度为140~170℃,干燥时间控制在15~25min。产品生产的工艺流程见图1。

2.3.3烧成工艺的调整

工业废渣含钙、镁等低温成分较多,对促进烧结有一定帮助,但废渣中有机物含量也相对较高,需要在低温阶段放慢烧成速度,充分排除有机物,否则会对产品质量产生影响。经过几个月的反复实验与结果测试分析,确定了烧成曲线:烧成温度1180℃,烧成周期28~35min,烧成曲线见图2。

2.4关键技术及要点

2.4.1对难处理的固体废料进行精加工

要尽量多地利用陶瓷工业废渣,就要研究各种废渣的特性。如废坯及废泥的化学组成和瓷质砖料相近,可将其与白泥等粘性原料一起球磨陈腐;废瓷砖、泥浆过筛等二次废渣、水煤浆废渣、选矿尾渣等需加工成一定细度的粒子用作为坯体骨料。通过精加工处理后,陶瓷工业废渣的加入量可超过80%。

2.4.2采用低温快烧技术,实现废水、废渣零排放,废气污染物大幅下降

废砖等熟料废渣的烧失量几乎为零,烧成过程不象生料那样发生各种物理化学变化,热膨胀系数小,可适应快烧,节约能耗,降低产品成本。淘洗泥二次废渣、水煤浆废渣、选矿尾渣等颗粒废渣不需要经过球磨与造粒,只需水选筛选,烧成收缩小;采用捞粒工艺与骨料均匀混合,促进烧结。根据国外相关测试,在高温区降温100℃,节能高达13%,因此采用低温快烧技术节能效果显著。

2.4.3对不同废渣颗粒进行捞料,形成独特的艺术效果

对不同废渣颗粒进行捞料,形成独特的艺术效果,利用废渣颗粒的尺寸配比和颜色搭配,可以将天然的花岗岩、戈壁砂模仿得惟妙惟肖。

3产品性能

加入80%陶瓷工业废渣的产品,其性能达到GBMT4100-2006标准,优等品率达到96%以上,具体的性能指标见表3。

4讨论

(1)在回收的陶瓷废渣中,有相当一部分为硬质材料,因此提高熟料废渣的细度,是改善坯体烧结性能的重要措施,本项目选用高效率、节能、粉尘污染小的干法粉碎技术和设备,选用粉料颗粒度分选稳定的筛分设备,把陶瓷硬质废渣加工成陶瓷生产用的精制原料。对于一般坯体用的废渣,控制入球磨的粒度是10~60目;对于废渣精制原料,其颗粒度稳定地控制在狭小的范围内,且经处理后杂质和铁质含量低,保证符合工艺要求;

(2)废砖等熟料废渣的烧失量几乎为零,烧成过程不象原矿那样发生各种物理变化和化学反应,可适应快烧,但由于其为瘠性料,会使生坯强度下降,也影响烧结强度;废砖等熟料经常混合有半熟料,半熟料废渣混有杂质,易产生斑点、熔洞,但对生坯强度有好处,烧成过程参与各种物理变化和化学反应,可弥补熟料废渣产生液相不足的弱点,有利生坯强度和烧结强度的提高。

(3)不同吸水率的熟料废渣,以及不同成分的半熟料废渣,其烧结性能都要互相适应。因此本项目在对各类废渣均化的基础上,除了考虑化学成分满足陶瓷砖性能的要求外,选择了熟料废渣多于半熟料废渣的互补原则(该原则符合废砖回收的特点);又考虑到熟料废渣回收种类的比例情况,选用吸水率低的废渣多于吸水率高的废渣;考虑到原矿原料对熟料废渣在烧结过程中生成玻璃相方面的补偿,加入了适量的矿化剂,以满足工业生产的需要。

(4)废渣中的生料和熟料难于聚合,为了解决以瘠性料为主的坯料粘性和烧结活性差的问题,使尽量多的陶瓷固体废渣得到利用,我们除了采用粘性好的粘土、适当增加粘土的含量以外,还开发了新型坯体增强剂,有效解决了坯料可塑性差的问题,开发的聚丙烯酸钠坯体增强剂具有更好的增强效果。聚丙烯酸钠在干燥后,分子结构仍为长链状,可以在陶瓷颗粒之间架桥,产生交联作用而形成不规则网状结构,将陶瓷颗粒紧紧包裹,起到纤维增加坯体强度的类似作用。同时适当提高瘠性料的球磨细度,增大坯体成形压力来提高烧结活性。下一步计划通过科学调整配方和改善生产工艺,进一步提高废渣的加入量。

(5)烧成温度与能耗的关系极大。研究表明,当烧成温度从1400℃降至1200℃时,能耗可降低50%~60%。由此可见,降低陶瓷产品的烧成温度对于节能具有十分重要的意义[7]。本项目采用低温快烧技术,降低烧成温度20℃以上,节约能耗;采用高速烧嘴,提高气体流速,强化气体与制品之间的传热,比传统烧嘴节约燃料10%~20%[6]。生产过程不产生新的污染,实现废水、废渣零排放,废气污染物大幅下降,达到绿色环保生产要求。

由于收集的陶瓷废渣存在烧成温度、吸水率的差异,因此,需要根据陶瓷废渣的特点,寻找他们之间的共性,研制出烧成温度宽的烧成曲线。

(6)采用新的捞料工艺,为陶瓷外墙的花色开发提供了广阔的空间。在生产中将各种颗粒按配方定量配比输送到自动捞料机里均匀混合,定点定时往机腔内喷雾(含稀释的增强液溶剂),保证混合时颗粒水分含量在7%~8%,避免在成形工序中分层开裂,过程控制比普通斑点瓷质砖以及大颗粒瓷砖的工艺要求更加细致严格,形成的装饰效果更具特色,产品质量更加稳定。

5结语

通过利用陶瓷生产过程中产生的大量陶瓷废料、水煤浆废渣、生产加工废渣等工业废渣生产绿色环保陶瓷,产品具有独特的装饰效果,有效节约了环境资源,符合我国能源政策。生产过程不产生新的污染,符合清洁生产要求,也为工业废物的污染处理开辟了一条新的途径。

参考文献

[1]黄宾.陶瓷行业的节能减排与绿色陶瓷的发展[J].佛山陶瓷,2008,8:1.

[2]邓明.中国绿色陶瓷的发展现状及其分析[J].中国陶瓷,2006,10:42.

[3]同继锋.绿色建筑卫生陶瓷产品评价体系[J].中国陶瓷工业,2009,1:30.

[4]付鹏,刘卫东.工业固体废弃物在陶瓷工业中的应用[J].佛山陶瓷,2006,12:13.

[5]杨辉,郭兴忠,樊先平,等.我国建筑陶瓷的发展现状及节能减排[J].中国陶瓷工业,2009,16:23

[6]谭绍祥,谭汉杰.广东陶瓷行业节能和发展循环经济的现状问题与对策[J].陶瓷,2004,4:11.

[7]冼志勇,刘树,曾令可.陶瓷行业应对节能减排的措施[J].佛山陶瓷,2009,6:13.

ProducingHealthyCeramicProductsUsingCeramicIndustrialWastes

LUOShu-fen

(FoshanRongzhouNO.2BuildingCeramicsFactoryCo.,Ltd.,Foshan528000,China)

化工废渣的处理技术范文篇3

关键词:有色冶金;废渣;有价金属;回收

中图分类号:X758文献标识码:A

金属是我们工业生产与生活中所必须的重要资源,随着社会的发展我们对金属的需求量越来越高,但是金属作为一种有限资源,目前已经出现短缺的态势。为保证我国金属资源利用的可持续性,必须要从有色冶金废渣中有效回收有价金属,做好资源的重复利用工作,发展绿色循环经济。通过回收废渣中的有价金属,确保金属资源的合理利用,与此同时降低有色金属废渣的污染,推动经济的健康可持续发展。

一、有色冶金废渣中的有价金属

有价金属属于有色冶金废渣中的一部分,金属冶炼单位要重点关注有价金属的回收,提高冶金废渣的处理效率,以免浪费过多的有价金属。

1有色冶金废渣

有色金属是冶炼行业的主要资源,其在冶炼的过程中会产生较多含有金属的废渣,而且有价金属的种类丰富,如:铅渣、锌渣等,如果不采用回收利用,即会造成很严重的金属资源浪费,部分有价金属随着冶金废渣的排放,直接作为废物处理,无法得到再次利用,对金属资源开采造成一定的压力。有色金属废渣在金属冶炼中占有很大的比重,已成为冶金处理的一项重点。

2有色冶金废渣中的有价金属

此类有价金属是指包含在冶金废渣中的物质,有色冶金主金属以外的金属资源。有价金属并不是需要冶炼的主金属,但是具有回收利用的价值,所以冶金行业需要针对此类有价金属,采取回收利用,降低有色冶金过程中的资源消耗。

二、有色冶金废渣中有价金属的回收

有价金属在有色冶金废渣的回收中必须要采用科学合理的回收技术,提高回收效率,目前,比较常见的有价金属回收途径主要包括:火法冶炼、湿法冶炼及选冶技术三类。

1火法冶炼

火法冶炼对有价金属的回收主要是依靠高温条件实现提炼。火法冶炼的提炼方式比较简单,没有复杂的工艺。首先有色冶金废渣需要经过蒸压等措施,大概提取含有有价金属的物质,重复焙烧;然后采取电炉还原的方式,即可得到有价金属的合金;最后根据合金的状态,选择对应的浸出萃取方式,待溶液沉淀后,获取精度很高的有价金属。目前,随着有价金属回收的发展,火法冶炼处于相对的弱势地位,因为火法冶炼消耗的能源比较多,所以其在回收技术中处于发展缓慢的状态。

2湿法冶炼

有价金属湿法冶炼的条件主要是通过一系列的化学反应。湿法冶炼以有色金属废渣为处理对象,采用酸碱化学反应、电化学反应等多项途径,保障有价金属回收的效益。湿法冶炼并不能适用于所有的有价金属,具有一定的选择性,湿法冶炼常用于难熔化的有色金属废渣中,如镍-钴,因此,有色冶金废渣回收有价金属时,需要有针对性的选择湿法冶炼。有价金属在有色冶金废渣中的含量基本不同,湿法冶炼的过程中,提前采用氧化的方式,促使除有价金属以外的物质能够挥发,避免影响回收的效果。以粗铜冶金的废渣为例,该废渣中含有丰富的有价金属,如铜、锌,此类有价金属的回收,不能重新进行炉内冶金,以免影响有价金属的回收效果,因此只能采用湿法冶炼,先对冶金废渣实行充分的水浸,沉淀废渣内的不溶物质,促使铜、锌可以溶入水分中,便于回收,除此以外,还可将铜过滤出去,获取成品硫酸锌,完成有价金属的成品回收。

3选冶技术

选冶技术在含量较少的有色冶金废渣中,具有较广泛的应用。部分有色冶金废渣中的有价金属含量少,如果采用其他回收技术,并不会取得高回收率,所以采用选冶技术回收有价金属。有价金属具有自身物理和化学特性,一般根据各类特性,合理的安排选冶回收。例如,某有色金属冶炼后产生的废渣,其中含有金、银、铁等有价金属,经过选冶技术后,比较明显的回收是铁精矿,而且回收的效率高达56.68%,具有很高的利用效率。近几年,选冶技术在有色金属废渣中回收利用的效益比较高,提升了有价金属的回收水平,有利于有价金属的资源应用。

三、有色冶金废渣中的金属制取

有色冶金废渣中的有价金属回收,还包括金属制取的工艺,此类工艺用于提炼金属,金属制取的方法主要分为电解法和联用技术两类。

1电解法

电解法是有价金属提取的核心,用于精炼废渣中的金属,而且电解法也能与回收技术相连,完善有价金属的回收。电解法在湿法冶炼中的最终环节,发挥电解的作用,电解有价金属溶解,由于电解法电极产生的电流效益好,密度可达1000A/m?以上,所以不会消耗太多的能量,体现高效率的电解回收,电解液盐酸基本不会发生损失,是有价金属回收中经常用到的方法。电解法在有价金属回收中能够得到纯净的金属物质,常用于有色冶金废渣的处理中,能够有效避免造成金属资源浪费。

2联用技术

有色冶金废渣中的金属种类多,废渣中含有不同特性的有价金属,其在回收过程中具有不同的物理表现和化学表现。因为废渣中有价金属的多样性表现,所以采用单一的回收技术,只能对一类有价金属产生作用,而利用联用技术则可以实现不同有价金属的回收,提高回收效率降低能源消耗,减缓资源开采利用压力。

结语

回收有色冶金废渣中的有价金属对社会经济发展及环境保护都是有利而无害的,对我国可持续发展战略的实行具有重要意义。有价金属的回收不仅提高了金属资源的利用效率,同时是对我国有色冶金行业发展的良好引导。但是关于回收技术还需要专业技术人员不断的研究、开发创新技术,降低回收成本的投入,利用更先进的技术提高回收效率,推进我国社会经济的健康可持续发展。

参考文献

  • 下一篇:测试工作经验总结(收集3篇)
    上一篇:电影产业发展报告(收集3篇)
    相关文章
    1. 初中毕业典礼校长致辞文本精选

      作初三毕业感言,此时此刻思绪万千。在这里请允许我代表全体初三学生向老师们致以最衷心的感谢,感谢你们的全心付出,感谢你们的辛勤耕耘。下面是由小编为大家整理的;初中毕业典..

      daniel 1 2025-05-04 22:31:33

    2. 班级管理方法和措施(精选4篇)

      班级管理措施与方法 一、班级概况本班有学生62人,其中男生31人,女生31人,学生结构较小,有利于管理。但学生年龄小,自理能力弱,一时还不能适应校园生活和学习,还有待进一步提高学生..

      daniel 2 2025-05-01 21:30:23

    3. 让我感动的作文(精选3篇)

      让我感动的作文篇1在我的记忆里,有许多让我感动的人,也的许多让我感动的事。有一件小事就像天上的星星一样,照在我的.心头,让我永远也不能忘记。那天,放学后,我像往常一样在学校..

      daniel 2 2024-07-08 08:54:17

    4. 学校疫情防控封闭管理方案范文(精

      学校疫情防控封闭管理方案篇1为切实增强做好疫情防控背景下的校园安全稳定工作,全力确保校园安全稳定和学生生命安全,现制定工作方案如下:一、认清形势,切实增强校园安全稳定工..

      daniel 2 2024-07-08 08:53:50

    5. 一个陌生人的作文(精选2篇)

      一个陌生人的作文篇1一个阳光明媚的早晨,学校的公交终于缓缓地进站了。我每次上车的时候都会看一看司机叔叔,与他目光相遇,眼神交流或微笑着打招呼的同时,我的心里总暖暖的。记..

      daniel 3 2024-07-08 08:53:45

    6. 物资储备方案范文(精选2篇)

      物资储备方案篇1为确保全体在校师生的生命财产安全,确保学校教育教学工作的顺利开展,防范消防安全事故的发生,力保消防安全事故发生时损失减少,危害降低,能快速、高效、合理有序..

      daniel 3 2024-07-08 08:53:43

    7. 有关工程师辞职报告六(精选3篇)

      有关工程师辞职报告六篇在生活中,报告有着举足轻重的地位,通常情况下,报告的内容含量大、篇幅较长。写起报告来就毫无头绪?下面是小编整理的工程师辞职报告6篇,仅供参考,欢迎大家..

      daniel 5 2024-07-08 08:53:35

    8. 我的舅舅作文精华(精选8篇)

      我的舅舅作文篇1我有一个爱钓鱼的舅舅,他有点肥,身材不高,声音有点沙哑,对人很亲切,他喜欢抽烟,也非常喜欢钓鱼,钓鱼技术也很高,还经常到一些地方钓鱼。而我也是很喜欢钓鱼,所以,每次..

      daniel 4 2024-07-08 08:53:09

    9. 幼儿园大班下学期班级工作总结(

      幼儿园大班下学期班级工作总结篇1在紧张与忙碌之中,又一个学期过去了,回顾整个学期,我们班老师都能认真遵守本园的规章制度,热爱幼儿,

      栏目名称:工作文案 0 2025-11-25

    10. 拆迁工作总结(收集11篇)

      拆迁工作总结篇1xx年,在县委、县政府的正确领导和关心支持下,xx乡党委政府坚持以重点工程项目建设为经济建设中心,突出工作重点,明确

      栏目名称:工作文案 0 2025-11-25