初一数学的知识点总结(精选4篇)

daniel 0 2024-05-11

初一数学的知识点总结篇1

第一章有理数

1、大于0的数是正数。

2、有理数分类:正有理数、0、负有理数。

3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)

4、规定了原点,单位长度,正方向的直线称为数轴。

5、数的大小比较:

①正数大于0,0大于负数,正数大于负数。

②两个负数比较,绝对值大的反而小。

6、只有符号不同的两个数称互为相反数。

7、若a+b=0,则a,b互为相反数

8、表示数a的点到原点的距离称为数a的绝对值

9、绝对值的三句:正数的绝对值是它本身,

负数的绝对值是它的相反数,0的绝对值是0。

10、有理数的计算:先算符号、再算数值。

11、加减:①正+正②大-小③小-大=-(大-小)④-☆-О=-(☆+О)

12、乘除:同号得正,异号的负

13、乘方:表示n个相同因数的乘积。

14、负数的奇次幂是负数,负数的偶次幂是正数。

15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。

16、科学计数法:用ax10n表示一个数。(其中a是整数数位只有一位的数)

17、左边第一个非零的数字起,所有的数字都是有效数字。

初一数学的知识点总结篇2

棱柱的基础知识

棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个多边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。棱柱用表示底面各顶点的字母来表示。

棱柱的底面:棱柱中两个互相平行的面,叫做棱柱的底面。

棱柱的侧面:棱柱中除两个底面以外的其余各个面都叫做棱柱的侧面。

棱柱的侧棱:棱柱中两个侧面的公共边叫做棱柱的侧棱。

棱柱的形成方式

棱柱是由一个由直线构成的平面沿着不平行于此平面的直线整体平移而形成的。

棱柱的顶点

在棱柱中,侧面与底面的公共顶点叫做棱柱的顶点。

棱柱的对角线:棱柱中不在表面同一平面上的两个顶点的连线叫做棱柱的对角线。

棱柱的高:棱柱的两个底面的距离叫做棱柱的高。

棱柱的对角面:棱柱中过不相邻的两条侧棱的截面叫做棱柱的对角面。

棱柱的分类

斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱,画斜棱柱时,一般将侧棱画成不与底面垂直。

直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。画直棱柱时,应将侧棱画成与底面垂直。

正棱柱:底面是正多边形的直棱柱叫做正棱柱。

平行六面体:底面是平行四边形的棱柱。

直平行六面体:侧棱垂直于底面的平行六面体叫直平行六面体。

长方体:底面是矩形的直棱柱叫做长方体。

我们学习的棱柱也包括了斜棱柱、直棱柱、正棱柱,连长方体也是棱柱的一种。

初一数学的知识点总结篇3

一、整式

单项式和多项式统称整式。

a)由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。

b)单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数,系数为1或-1。

c)一个单项式中,所有字母的指数和叫做这个单项式的次数(注意:常数项的单项式次数为0)

a)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数.

b)单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.

a)整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.

b)括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。

二、同底数幂的乘法

(,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

b)指数是1时,不要误以为没有指数;

c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

d)当三个或三个以上同底数幂相乘时,法则可推广为(其中、n、p均为整数);

e)公式还可以逆用:(、n均为整数)

a)幂的乘方法则:(,n都是整数数)是幂的乘法法则为基础推导出来的,但两者不能混淆。

b)(,n都为整数)

c)底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3

d)底数有时形式不同,但可以化成相同。

e)要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。

f)积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(ab)n=anbn(n为正整数)。

g)幂的乘方与积乘方法则均可逆向运用。

三、同底数幂的除法

a)同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0).

b)在应用时需要注意以下几点:

1)法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a0。

2)任何不等于0的数的0次幂等于1,即a0=1(a≠0),如100=1,(-2.50=1),则00无意义。

c)任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的,当a<0时,a-p的值可能是正也可能是负的,如,d)运算要注意运算顺序。

初一数学的知识点总结篇4

1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。

2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

3.倒数:若两个数的积等于1,则这两个数互为倒数。

4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;

几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.

5.科学记数法:,其中。

6.实数大小的比较:利用法则比较大小;利用数轴比较大小。

7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。

  • 下一篇:校园安全培训总结(精选5篇)
    上一篇:大型文艺晚会方案策划设计模板(精选5篇)
    相关文章