处理污水氨氮的方法(6篇)

daniel 0 2024-10-27

处理污水氨氮的方法篇1

关键词:废水,氨氮,饮用水

1.概述

氨氮的存在使给水消毒和工业循环水杀菌处理过程中氯量增大;对某些金属,特别是对铜具有腐蚀性;当污水回用时,再生水中的氨氮可以促进输水管道和用水设备中微生物的繁殖,形成生物垢,堵塞管道和用水设备,并影响换热效率,更严重的是氨氮是造成水体富营养化的重要原因。氨氮存在于许多工业废水中。钢铁、炼油、化肥、无机化工、铁合金、玻璃制造、肉类加工和饲料生产等工业,均排放高浓度的氨氮废水。某些工业自身会产生氨氮污染物,如钢铁工业(副产品焦炭、锰铁生产、高炉)以及肉类加工业等。而另一些工业将氨用作化学原料,如用氨等配成消光液以制造磨砂玻璃。此外,皮革、孵化、动物排泄物等废水中氨氮初始含量并不高,但由于废水中有机氮的脱氨基反应,在废水存积过程中氨氮浓度会迅速增加。不同类的工业废水中氨氮浓度千变万化,即使同类工业不同工厂的废水中氨氮浓度也不完全相同,这取决于原料性质、工艺流程、水的耗量及水的复用等。进入水体的氮主要有无机氮和有机氮之分。无机氮包括氨态氮(简称氨氮)和硝态氮,亚硝态氮不稳定可以还原成氨氮,或氧化成硝态氮。有机氮有尿素、氨基酸、蛋白质、核酸、尿酸、脂肪胺、有机碱、氨基糖等含氮的有机物。在一定的条件下有机氮会通过氨化作用转化成无机氮。免费论文参考网。

2.水体富营养化及其危害

2.1水体富营养化现象及主要成因

富营养化”是湖泊分类与演化方面的概念,过量的植物性营养元素氮、磷排入水体会加速水体富营养化的进程。水体富营养化现象是指在光照和其它适宜环境条件情况下,水中含有的植物性营养元素氮的营养物质使水体中的藻类过量生长,在随后的藻类植物的死亡以及异样微生物的代谢活动中,水体中的溶解氧逐步耗尽,造成水体质量恶化、水生态环境机构破坏。

当水体中含N>0.2mg/L,含P>0.02mg/L水体就会营养化。水体营养化后会引起某些藻类恶性繁殖,一方面有些藻类本身有藻腥味会引起水质恶化使水变得腥臭难闻;另一方面有些藻类所含的蛋白质毒素会富集在水产物体内,并通过食物链影响人体的健康,甚至使人中毒。如海生腰鞭毛目生物的过度繁殖能使海水呈红色或褐色,即俗称赤潮”;沟藻属是形成赤潮的常见种类,它们所产生的毒素会被贝类动物所积累,人体食用后会引起严重的胃病甚至死亡。水体中大量藻类死亡的同时会耗去水体中的溶解氧,从而引起水体中鱼虾类等水产物的大量死亡,致使湖泊退化、淤泥化,甚至变浅、变成沼泽地甚至消亡。据统计,我国平均每年有20个天然湖泊消亡。我国广东珠海沿江、厦门沿海、长江口近海水域、渤海湾曾多次发生藻类过度繁殖引起的赤潮,造成鱼类等水产物大量的死亡,使海洋渔业资源遭到的破坏,经济损失严重。而水体一旦富营养化后没有几十年的时间是很难恢复的,有的甚至无法恢复,如美国的伊利湖是典型的富营养湖,科学家估计需要100年才能恢复。

2.2降低水体的观赏价值

通常1mg氨氮氧化成硝态氮需消耗4.6mg溶解氧。水体中氨态氮愈多,耗去的溶解氧就愈多,水体的黑臭现象就越发严重。这就影响了水体中鱼类等水生生物的生存,使其易因缺氧而死亡。富营养的水质不仅又黑又臭,且透明度差(仅有0.2m),往往影响了江河湖泊的观赏和旅游价值。随着改革开放的深入,人民群众的生活水平日趋提高,旅游已成为人们越来越广泛的需求。而水质优良的江河、湖泊、公园是城市景观的重要组成部分,也是人们生活娱乐、游泳、观赏、休闲的最佳场所。但我国的大部分湖泊已呈现出不同程度的营养态。有些通常发黑、发臭,人们已无法在其中游泳、游览了,更观赏不到鱼类在其中嬉戏的情景,大大降低了这些湖泊的利用价值。影响当地人民的生活,并且也严重影响当地的旅游业发展,造成较大的经济损失。

2.3危害人类及生物生存

当水体中pH值较高时。氨态氮往往呈游离氨的形式存在,游离氨对水体中的鱼及生物皆有毒害作用,当水体中NH3-N>1mg/L时,会使生物血液结合氧的能力下降;当NH3-N>3mg/L在24~96h内金鱼及鳊鱼等大部分鱼类和水生物就会死亡。可使人体内正常的血红蛋白氧化成高铁血红蛋白,失去血红蛋白在体内的输氧能力,出现缺氧的症状,尤其是婴儿。当人体血液中高铁血红蛋白>70%时会发生窒息现象。若亚硝酸盐长时间作用于人体可引起细胞癌变。经水煮沸后的亚硝酸盐浓缩,其危害程度更大。免费论文参考网。以亚硝酸盐为例,自来水中含量为0.06mg/L时,煮沸5min后增加到0.12mg/L,增加了100%。亚硝酸盐与胺类作用生成亚硝酸胺,对人体有极强的致癌作用,并有致畸胎的威胁。美国推荐水中亚硝酸盐的最高允许浓度时1mg/L,而我国上海第一医院建议在饮用水中的亚硝酸盐的浓度必须控制在0.2mg/L以下。

水体中的氮营养来源是多方面的,其中人类活动造成的氮的来源主要有以下几方面:1.未经处理的工业和生活污水直接排入河道和水体:这类污水的氨氮含量高,排入江河湖泊,造成藻类过度生长的危害最大。城市污水、农业污水,食品等工业的废水中含有大量的氮、磷和有机物质。据统计,全世界每年施入农田的数千万吨氮肥中约有一半经河流进入海洋。美国沿海城市每年仅通过粪便排入沿海的磷近十万吨。2.污水处理场出水:采用常规工艺的污水处理厂,有机物被氧化分解产生了氨氮,除了构成微生物细胞组分外,剩余部分随出水排入河道,这是城市污水虽经过二级常规处理但河道仍然出现富营养化和黑臭的重要原因之一。3.面源性的农业污染物,包括废料、农药和动物粪便等。

3.氨氮废水处理的研究现状及主要处理技术

氨氮处理技术的选择与氨氮浓度密切相关,而对一给定废水,选择技术方案主要取决于以下几方面:(1)水的性质;(2)处理要求达到的效果;(3)经济效益,以及处理后出水的最后处置方法等。根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水、中等浓度氨氮废水、低浓度氨氮废水。随着工业的发展,中、高浓度的氨氮废水排放日益增多。免费论文参考网。现在,由于对氨氮废水的控制日益严格,对氨氮废水的处理技术要求越来越高。工业废水的氨氮去除方法有多种,主要包括物理法、化学法、生物法等。其中物理法有反渗透、蒸馏、土壤灌溉等技术;化学法有离子交换、氨吹脱、折点氯化、焚烧、催化裂解、电渗析、电化学处理等技术;生物法有藻类养殖、生物硝化、固定化生物技术等。虽然每种处理技术都能有效地去除氨氮,但应用于工业废水的处理必须具有应用方便、处理性能稳定、适用于废水水质且经济实用的特点。根据国内外工程实例及资料介绍和环境工作者所研究的重点,目前处理氨氮废水比较实用的方法主要有折点氯化法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法等。下面就这几种方法作一简单介绍。

3.1折点氯化法去除氨氮

折点氯化法是将氯气(生产上用加氯机将氯气制成氯水)或次氯酸钠通入废水中将废水中的NH4+-N氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯量就会增多。因此该点称为折点,该状态下的氯化法称为折点氯化。废水中的氨氮常被氧化成氮气而被脱去,处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg氯气,pH值在6~7反应最佳,接触时间为0.5~2小时。在上述条件下,出水中氨氮浓度小于0.1mg/L。

折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右的碱(以CaCO3计)。

折点氯化法最突出的优点是可通过正确控制氯的添加量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低于5mg/L的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。虽初次投资较少,但运行费用高,副产物氯胺和氯代有机物会造成二次污染,所以氯化法只适用于处理低浓度氨氮废水。

3.2选择性离子交换法去除氨氮

离子交换是指在固体颗粒和液体界面上发生的离子交换过程。离子交换法选用对NH4+离子有很强选择性的沸石作为交换树脂,从而达到去除氨氮的目的;而常规的离子交换树脂不具备对氨离子的选择性,故不能用于废水中去除氨氮。沸石具有对非离子氨的吸附作用和与离子氨的离子交换作用,它是一类硅质的阳离子交换剂,储量丰富价格低廉,对NH4+有很强的选择性。

【参考文献】

[1]沈耀良,王宝贞.废水生物处理新技术-理论与应用[M].中国环境科学出版社,2000:11-8

[2]钱易,唐孝炎.环境保护与可持续性发展[M].高等教育出版社,115-128

[3]郑兴灿,李亚新.污水除磷脱氮技术[M].中国建筑工业出版社,1998:15-87

[4]陈慧中,杨宏.给水系统中藻类研究现状及进展[J].现代预防医学,2001,28(l):79-80

[5]孙锦宜.含氮废水处理技术与应用[M].化学工业出版社.2003:15-36

[6]许国强,曾光明,殷志伟等.氨氮废水处理技术现状及发展[J].湖南有色金属,2002,18(2):29-30

[7]胡孙林,钟理.氨氮废水处理技术[J].现代化工,2001,21(6):47-50

[8]李晔.沸石改性及其对氨氮废水处理效果的研究[J].非金属矿,2003,26(2):53-55

[9]袁俊生,郎宇琪,张林栋等.天然沸石法工业污水氨氮资源化治理技术[J].环境污染治理技术与设

处理污水氨氮的方法篇2

【关键词】水质;氨氮;测试步骤;对策

中图分类号:TU991.21文献标识码:A文章编号:

水对于人类来说,不仅是维持生命的基本要素,更是促进人类参与社会实践的重要前提。水不仅可以提供给生活使用,也可以为企业生产供应足够的原料,各种广泛用途证明了水的利用价值。由于社会化大生产进程的加快,我国工业生产对水资源造成了明显的污染,环境问题已经成为制约经济发展的关键因素。为了实现科学发展观的政策目标,应加快水质安全检测以改善水资源利用率,氨氮测试是水质调试的重点内容。

一、水中氨氮测试的必要性分析

我国社会主义经济正处于快速发展阶段,经济产业结构实现了优化升级且国民经济收益有了显著提升。但是,受到传统粗放型产业模式的约束,市场经济收益以牺牲生态环境为代价,扰乱了正常的社会环境体系。基于科学发展观指导下,我国开始注重水资源质量的调研评估,对地区用水情况展开全面性的抽样测试,这是时代变革的必然要求。水中氨氮测试的必要性包括:

1、法律需求。我国进入市场经济改革阶段,对水资源调度给予了高度关注,与水质检测相关的管理体制更加成熟,尤其是法律规定方面有了具体的律法指导。《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》是水污染处理的法律依据,据此条件下国家环境保护局了《水质铵的测定纳氏试剂比色法》(GB7479-87)等标准,指导水质测试活动的有序开展[1]。

2、健康需求。水是世界上紧缺资源之一,全球长期以来遭受着严重的水污染问题,可利用水资源存储量在不断地减少。氨氮测试能够详细地掌握水资源质量,对水中氨氮含量深入计算与研究,进而制定最佳方案投入到水资源分配中。近年来水污染引起的健康问题日趋增加,环境部门希望通过水质检测找出水污染的根源,从根源上控制民众的健康指数,全面提升国民的健康水平。

3、环境需求。氨氮处于水中会形成游离氯,这是一种毒性较强的物质,并且对水中的PH值产生不利影响。氨氮处理不及时,原生态水中的质量越来越低,超过氨氮规定的标准量,便会带来一系列的污染问题。例如,当水中温度持续上升时,水污染对植物、鱼类的危害接近亚硝酸盐。因此,结合氨氮测试结果分析水的游离氯含量,能够为环境除污工作提供科学的指导,维持生态环境的绿化建设。

二、氨氮测试方法及其操作步骤分析

从调查实践中发现,氨氮含量超标是造成水污染的主要因素之一,由于氨氮以游离氯、铵离子等形式存在,游离氯产生的毒性会致使植物死亡,污染了原生态水资源的质量。纳氏试剂比色法是检测水中氨氮含量的先进方法,其操作步骤如下:

1、原理

氨氮测试是化学性质的试验检测活动,其必须要有对应的原理理论为指导,这样才能保证试验操作流程与专业要求一致,测试所得数据才能达到预期的状态。本次氨氮测试方法中,所用的化学原理:碘化汞和碘化钾的碱性溶液与氨反映生成淡红棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410~425nm范围内测其吸光度,计算其含量。本法最低检出浓度为0.025mg/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。这一原理内容中,强调了水样抽取需注意的相关问题,最关键一步是对水质进行预处理,提前做好试验测试的准备工作[2]。当水样做适当的预处理后,本法可用于地面水、地下水、工业废水和生活污水中氨氮的测定,对最终数据综合处理便可获得水质氨氮的含量值。

2、操作步骤

(1)水样预处理。水中氨氮测试操作前应做好对应的准备工作,上述提到,预处理是本次测试不可缺少的环节。试验人员抽取水质样本,设置于容器中执行前期测试方案。取250mL水样(如氨氮含量较高,可取适量并加水至250mL,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化纳溶液或演算溶液调节至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏,至馏出液达200mL时,停止蒸馏,定容至250mL。采用酸滴定法或纳氏比色法时,以50mL硼酸溶液为吸收液;采用水杨酸-次氯酸盐比色法时,改用50mL0.01mol/L硫酸溶液为吸收液。

(2)标准曲线的绘制。绘制曲线图是对本次试验结果的总结,用图像表达出氨氮比例的大小。吸取0,0.50,1.00,3.00,7.00和10.0mL铵标准使用液分别于50mL比色管中,加水至标线,加1.0mL酒石酸钾溶液,混匀。加1.5mL纳氏试剂,混匀。放置10min后,在波长420nm处,用光程20mm比色皿,以水为参比,测定吸光度。由测得的吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的标准曲线[3]。一般情况下,氨氮测试标准曲线图可由计算机完成操作,这是信息科技应用于试验自动化的必然趋势。计算机可根据氨氮测试参数进行建模处理,用三维模型反映出水质含有氨氮的比例高低,并结合数据、图像两种形式表达出来。

(3)水样的测定。分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50mL比色管中,稀释至标线,加入0.1mL酒石酸钾钠溶液.以下同标准曲线的绘制。分取适量经蒸馏预处理后的馏出液,加入50mL比色管中,加一定量1mol/L氢氧化纳溶液,以中和硼酸,稀释至标线。加1.5mL纳氏试剂,混匀.放置10min后,同标准曲线步骤测量吸光度[4]。试验人员需注意操作步骤的规范性,对水样本用量严格控制,以免操作失误对水质检测结果产生过大的误差。考虑到水质检测存在某个范围的误差值,为了获得最准确的氨氮含量比例,操作中要进行空白实验,以无氨水代替水样,做全程序空白测定。

三、基于测试结果的防污处理意见

水污染是世界环境组织提出的最主要污染之一,严重危害了人们正常的生活状态,对动植物生存也有较大的破坏作用。随着全球环境问题的逐渐加剧,世界环境组织开始对水污染状况实施调研分析,弄清水污染现象的具体成因,以及时拟定切实可行的环境保护方案。基于本次氨氮测试结果,应注重水污染问题的防治处理,为社会创造更加安全、环保、优质的用水环境。笔者认为,政府在水污染环境处理中发挥宏观调控作用,督促环境部门对地方水质定期展开检测;检查工业生产企业是否存在污染水排放现象,检查地面水、地表水的水质标准,及时发现水污染存在的问题;扩大水资源保护的宣传力度,号召全民参与生态水保护系统的建设活动中;这些都是氨氮污染问题处理的有效措施。

结论

氨氮是水体中不可缺少的营养元素,适量的氨氮成分有助于水中植物的生长。但是,若氨氮含量超出标准规定值,则会对水生物产生严重的危害作用,阻碍了水环境生态化系统的持久性。为了避免水质污染造成的破坏,保持地区用水资源的优化配置,水中氨氮测试是最为实用的方式。本次选用纳氏试剂比色法参与测试,所得结果对水质氨氮指标控制提供了可靠依据,推动了地区用水的生态化建设。

【参考文献】

[1]罗静雪.地面水复杂成分抽样测试结果的综合分析[J].给水排水,2010,30(8):113-115.

[2]张泽亮.纳氏试剂比色法测试水质污染的操作步骤研究[J].扬州大学学报,2011,20(13):78-80.

处理污水氨氮的方法篇3

【关键词】炼化装置酸性水脱硫除氨技术

炼油装置酸性水通常是指炼油企业常减压、催化裂化、焦化、加氢裂化等生产装置中塔顶油水分离器、液态烃储罐脱水、富气水洗、液态烃水洗以及叠合汽油水洗等部分的排水,通常这部分污水排水量较小,约占全厂污水10%-20%,但污水中硫化物和氨氮浓度较高,约占全厂污水中硫化物、氨氮总量的90%以上,其中所含有的酚、氢化合物和油类等污染物,具有强烈的恶臭,即污染了环境,同时又影响其后的污水处理装置,给污水的水化处理造成极大的困难,是炼油厂污水处理的重点问题之一。现将此部分酸性水污染物、浓度及酸性水处理方法介绍如下。

一、收集不同装置酸性水污染物成分及浓度数据

对酸性水处理的前提是必须清楚不同装置产生的酸性水污染物的成分及其浓度。不同的原油种类和不同的加工装置产生的酸性水污染物不同,一般原油中含硫含氮量较高则其酸性水中的硫化物和氨氮浓度往往较高。

二、装置酸性水处理技术

装置酸性水处理根据其硫化物和氨氮含量的高低通常采用空气氧化法、吹脱法、汽提法、化学沉淀法和高效微生物法等多种技术方法。

(一)利用空气氧化法处理低含硫酸性水

空气氧化法是指利用空气所含的氧气氧化废水中有机物和还原性物质的处理方法,是一种比较常规的处理含硫废水的方法。空气氧化法的硫化物去除率通常可达80%-95%,氨氮去除率为10%-40%。其中硫化物中约90%被氧化成硫代硫酸盐,10%被氧化成硫酸盐,氨氮的去除在很大程度上是由于吹脱作用。空气氧化法的主要优点是设备少、流程简单、投资和操作费用低。而缺点是尾气含有恶臭气味,氧化使硫以盐的形式沉淀于废水中,但是随着酸性水硫化物浓度的不断提高和环保监管的日益严格,空气氧化法应用也越来越少,只有在酸性水量小,硫化物浓度低(通常硫化物在2000mg/L以下)可通过空气氧化法处理酸性水。

(二)使用出脱法处理高浓度氨氮酸性水

采用吹脱法脱出水中的氨氮,主要适用于处理高浓度氨氮的酸性水。通过将气体通入水中,确保气液充分相互接触,而水中溶解的游离氨穿过气-液界面,向气相转移,以便达到脱除氨氮的目的。而水中的氨氮则以铵离子(NH4+)和游离氨(NH3)存在。吹脱法具有流程简单、处理效果稳定、运行费和基建费较低、实用性较强等优点。如采用与生物法、氯化法等相结合的工艺能很好解决吹脱处理后废水氨氮浓度高的问题,然而,吹脱后的氨气随空气进入大气,容易造成二次污染,无法达到排放要求。如何确保吹脱出的氨气无害化,避免二次污染,达到环境与经济效益相统一,必将成为今后吹脱法处理高浓度废水的研究方向。

(三)采用蒸汽汽提法处理酸性水

酸性水为硫化氢、氨和二氧化碳和水的四元体系,硫化氢、氨和二氧化碳以NH4HS、(NH4)2S、NH4HCO3、(NH4)2CO3等铵盐形式在水中存在,这些弱酸弱碱盐水解后分别产生游离的硫化氢、氨和二氧化碳分子,这些分子又重新建立起液相平衡,该体系是化学平衡、电离平衡和相平衡共同存在的复杂体系,硫化氢铵水解反应的平衡常数随温度升高而增加,而以溶液形式存在的硫化氢、二氧化碳和氨水解成分子状态的硫化氢、二氧化碳和氨后,由液相转为气相。通入的蒸汽有加热和降低气相中硫化氢、二氧化碳和氨的分压双重作用,更快的促使它们从液相进入气相,从而达到净化水质的目的。蒸汽汽提法除了能回收硫化氢和氨气外,还可脱出废水中的部分酚。气提出的硫化氢可制取硫化钠、硫磺和硫酸,同时可回收副产品氨水。

(四)采用化学沉淀法处理酸性水

化学沉淀法是采用化学药品与污水中硫化物和氨氮反应,产生沉淀物,从而达到去除污水硫化物或氨氮的目的。这种方法可以实现氨氮的回收利用,沉淀反应不受温度等因素限制,设计操作较简单,能够有效处理氨氮浓度400mg/L以上的中高浓度污水,脱氮效率较高,基本解决了氮的回收和氨氮二次污染的问题,但是这种方法处理成本偏高,主要费用为药剂,寻找高效价廉的沉淀药剂,将是日后化学沉淀法的研究和发展方向。

(五)采用高效微生物技术处理酸性水

高效微生物是通过生物工程手段,针对不同污染物培育出的专门降解微生物,再制备成干粉状,在污水生化工艺启动后直接投加使用。它是由多种微生物菌群、复合酶制剂、微生物营养素、生物活性诱导剂等成分配置而成,主要特点为专一性强,可按不同的进水水质选择专门的微生物,尤其是对传统方法无法处理或者处理效果很差的高氨氮浓度污水和高浓度有机污水有独特的处理效果,微生物活性较高,抗冲击能力较强,处理效率迅速,效果稳定,繁殖能力强,速度较快,培育时间短,能够快速启动和恢复系统运行。

三、结束语

随着我国进口原油比例和炼油深度的不断增加,酸性水污染物也随之不断变化和成倍增长,单纯采用一种酸性水处理技术在某些企业已无法满足环保和后续污水处理场的要求,在今后实际应用中必须综合考虑酸性水的物理化学性质和操作影响因素,按照具体情况,采取切实可行的组合工艺方案,通过几种方法联合分级使用,避免每种方法的局限性和二次污染问题的出现,发挥各种处理技术的优势,以便满足企业和环保需求。

参考文献:

处理污水氨氮的方法篇4

论文关键词:草炭,氨氮,CHF工艺,硝化

腐殖质滤池(HumusFilter,HF)是利用垃圾填埋场中筛选出的腐殖垃圾作为填料,构筑形式与生物滤池类似的一种新型惰性填料生物反应器。HF工艺由于其优越的污水净化效率和废物资源化的理念,现已被广泛推广,主要应用领域:生活污水和家禽厂污水的处理。但是HF工艺和其他滴滤池一样有堵塞和污染物负荷较低的缺陷【1-2】。循环腐殖质滤池(CirculatingHumusFilter,CHF):通过腐殖填料循环提高处理效能,解决填料堵塞问题的腐殖填料滤池技术。立足CHF工艺特点硝化,通过采用草炭为填料调节工艺运行参数和方式分析了其处理高浓度氨氮废水的效果,为CHF工艺应用于高浓度氨氮废水提供了依据。

1、实验材料、装置与方法

实验选用草炭为填料论文格式范文。草炭具有较高的氨氮吸附量【3】和较高的阳离子交换量CEC约为126.4cmol/kg,轻质纤维状具有良好的透气功能且水力负荷较一般滴滤池高【4】。高氨氮污水选用生活污水、葡萄糖和氯化铵配制。

图1草炭处理高浓度氨氮废水装置图

实验装置见图一。填料柱为3个DN100高1m的PVC管。草炭装填高度90cm,柱底装填5cm的碎石承托层;实验时将3根填料柱交替串联使用其中两根,另一根闲置,闲置周期为3天。采用蠕动泵间歇自上而下进水湿干比为40min:140min,水力负荷0.5m/d,进水适当曝气控制进水溶解氧大于2ppm。研究内容包括草炭的物化性质和工艺不同污染物负荷处理效果及其稳定性。主要水质分析项目COD、氨氮、总氮,分别采用重铬酸钾法、水杨酸-次氯酸盐分光光度法、碱性过硫酸钾消解-紫外分光光度法。

2、结果与讨论

2.1草炭吸附特性研究

2.1.1pH对其吸附性能影响

配置50mg/l的NH4+溶液,分别取4份75ml该溶液于4个100ml锥形瓶中,并且用稀NaOH溶液调节PH至6、7、8、9,各加入2.00mg经65℃干燥的草炭。置于摇床中调节温度25℃,转速120r/min,时间为24h。待吸附平衡后测定吸附后溶液的NH4+浓度。

图2pH对草炭吸附氨氮的影响

实验表明:在一定范围内硝化,随着溶液pH增大草炭对于氨氮的吸附呈增大趋势,同时偏碱性环境有利于硝化细菌的增值促进硝化反应的顺利进行论文格式范文。

2.1.2静态吸附等温线实验

分别称取5份草炭(2.00mg)分别置于100的锥形瓶中,加入浓度分别为10、25、50、100、200mg/lNH4+溶液,控制温度为25℃,在恒温振荡器中以120r/min的转速震荡24h,使吸附达到平衡。测定平衡后吸收液中的NH4+浓度。

图3草炭静态吸附动力学实验

实验表明:随着氨氮浓度的增大,草炭的吸附量逐渐增大,且在低于100mg/L时草炭吸附量增加明显,高于100mg/L时吸附量基本维持在0.6mg/g,这表明草炭能更高效的吸附氨氮浓度较高的废水。

2.1.3静态吸附动力学实验

将2.00g草炭加入到初始浓度为50mg/L的NH4+溶液中,控制温度为25℃,振荡器以120r/min不停震荡。每隔一段时间(5min、7min、10min、20min、25min、0.5h、40min、1h、2h……)取样分析其浓度变化,吸附平衡为止,作出吸附时间与吸附量的关系曲线。

图4草炭吸附氨氮平衡实验

图4表明草炭具有高效的氨氮吸附能力硝化,仅30min左右草炭对50mg/L的NH4+溶液吸附达到平衡,平衡时间短。

综上所述,草炭独特的吸附特性能够在较短时间内吸附大量氨氮,这有利于提高工艺进水力负荷、缓解填料层高度和工艺堵塞。

2.2CHF工艺处理效果分析

图5草炭为填料的CHF工艺COD处理效果

该工艺对污染物的去除主要是由填料的吸附和微生物降解共同作用完成。系统运行的初期内部的微生物环境尚不成熟,废水中的COD、氨氮、总氮主要是依靠草炭的高效吸附去除;如图5所示,由于草炭高效吸附性能和阳离子交换量使进水初期氨氮基本被完全去除,出水氨氮浓度低于10mg/L;随着吸附量逐渐达到饱和出水中各项水质指标短期内稍有回升;最终经过约2周的驯化系统内部生物环境达到稳定,驯化周期明显短于一般的生物滤池处理工艺,当进水COD浓度为150-240mg/L时,COD的去除效率稳定在80%-85%之间,出水浓度约35-45mg/L;当进水COD提升至300mg/L时系统的COD去除效率基本不变,出水颜色呈浅黄色。

图6草炭为填料的CHF工艺氨氮处理效果

草炭具有良好的透气性能【5】,当进水DO约为2ppm其出水上升至5-6ppm,为硝化细菌的增值提供了充足的氧气;数据表明填料柱内实现了稳定高效的硝化反应。如图6所示硝化,当进水氨氮负荷分别为150、200、300mg/L时,出水氨氮浓度均稳定在2mg/L以下,去除率接近100%。同时工艺采用间歇式进水为系统内部微生物自身代谢创造了条件,有效的防止了由于微生物过度繁殖造成填料柱堵塞,系统稳定运行后渗透系数未发生明显变化论文格式范文。

图7草炭为填料的CHF工艺总氮处理效果

由于进水中溶解氧过高和碳源不足的限制导致系统内部反硝化细菌增殖受到制约,系统反硝化不充分导致总氮去除率较低,系统在第14天到第22天时控制进水总氮为200mg/L-230mg/L去除率约为15-20%;第23天时提升总氮至400mg/L左右时总氮去除率为50-55%,这是由于添加了碳源,进水取消曝气并将COD提升至300mg/L,系统反硝化得到强化。

3、结论

(1)草炭独特的物化性质适合作为CHF工艺处理高浓度氨氮废水填料。主要表现为:较高氨氮吸附量约0.56mg/g,吸附平衡时间短约30min,pH在6-9范围内吸附量岁碱性增大而增大,而此范围内适合硝化细菌增殖。

(2)该工艺适合处理生化性较好的高浓度氨氮废水。进水pH控制在8-9之间(过高会影响草炭的稳定性,导致出水色度增加),当进水负荷为0.5m/d、温度为20℃硝化,进水COD、氨氮、TN浓度分别为150-180mg/L、150-160mg/L、190-220mg/L时,采用间歇式进水(湿干比40min:140min)其出水较为清澈稳定后COD、氨氮、TN去除率分别为:85%-90%、约100%、15%-20%;当进水氨氮浓度提升至300mg/L,COD浓度提升至200-250mg/L时,COD、氨氮、TN去除率分别为:80%-85%、约100%、45%-50%,填料柱去除效果较稳定;出水颜色有浅黄色。

(3)该工艺抗堵塞且具备高效的硝化功能,但总氮的去除效果不明显。研究表明,可通过出液回流,溶解氧以及添加碳源提升总氮的去除效率;也可以添加后续厌氧单元提升反硝化效果。

参考文献:

【1】夏金雨,吴军,曹丽华等.填料在净化污水过程中渗透性能变化趋势的研究[J].环境污染与防治,2009,31(2):34-37

【2】夏金雨,吴军,周正伟等.腐殖质含量对填料净化污水效能的影响[J].环境工程学报.2009,3(3):422-424

【3】秦玲,康文怀,李嘉瑞等.草炭及其改良土壤对氮、磷、钾的吸附特性[J].中国林业科技大学学报,2009,29(1):20-24

【4】崔理华,朱夕珍,骆世明等.煤渣―草炭基质垂直流人工湿地系统对城市污水的净化效果[J].应用生态学报.2003,14(4):597-600

【5】张建,黄霞,施汉昌等.掺加草炭的地下渗滤系统处理生活污水[J].中国给水排水,2004,20(6):41-43

处理污水氨氮的方法篇5

关键词:SMSBR焦化废水硝化NO2-积累短程脱氮

Abstract:Asubmergedmembranesequencingbatchbioreactorwasusedtotreatcokewastewater.Longrunningperformanceshowedthatduetothemembraneinterception,thenitrobacterisenrichedinreactorintheinterestofimprovingthenitrificationrate;themaximumammonianitrogenloadingcanbe0.19kg/(m3·d)witheffluentammonianitrogen<1mg/L(removalrate99%).Longsludgeretentiontimemayresultintheaccumulationofmetabolicproductsandhighmolecularmaterials,andthusinhibitingactivityofnitratebacteria(nitrobacter)andcausingaccumulationofNO2-,whichisbeneficialtotherunningofshort-cutdenitrification.However,toolongretentiontimewillaffecttheactivityofnitritebacteria(nitrosomonas),detrimentaltothetreatmenteffectofammonianitrogen.Thenitrificationeffectinthewholesystemismainlyinfluencedbytemperature,pH,DO,andshockloading.

Keywords:SMSBR;cokewastewater;nitrification;NO2-accumulation;short-cutdenitrification

焦化废水含氮量高且含有大量有毒和难降解物质,若采用传统生物处理工艺不但流程较长,处理效果也较难达到要求,而膜生物反应器通过膜分离强化了生物处理效果,克服了传统工艺的弊端[1]。[HJ]由于膜的截留作用使微生物不会随出水流失,同时大分子难降解物质和微生物的代谢产物也被保留在反应器内,其中有些物质可能对微生物的生理活动产生一定影响,使得膜生物反应器在去除氨氮的过程中具有不同于普通活性污泥法的特点。

1试验材料和方法

1.1装置及材料

膜生物反应器装置如图1所示。反应器容积为15L,膜组件采用PVDF中空纤维微滤膜,孔径为0.15μm,膜面积为0.22m2。

1.2运行条件

生物反应器的运行分为两阶段:第一阶段(1999年9月27日—2000年8月1日)按缺氧—好氧方式运行,周期为24h,其中缺氧进水为6h、曝气反应为15h、膜排水为2h(排水量为11L)、闲置为1h;第二阶段(2000年8月2日—2000年9月23日)按缺氧—好氧方式运行(9月2日—9月23日排水量减为8L),周期仍为24h,即缺氧进水为3.5h、曝气为15h、缺氧搅拌为3.5h、曝气排水为2h(或缺氧进水为3h、曝气为15h、缺氧搅拌为4.5h、曝气排水为1.5h)。

出水由蠕动泵经膜排出,蠕动泵每抽吸10min则间歇5min,通过膜组件下部曝气产生的水流剪切作用同时辅以膜组件的垂直运动来控制由于膜污染引起的通量衰减。试验期间基本没有排泥,污泥增长缓慢,经核算泥龄为600d。

1.3原水水质

原水为上海焦化厂初沉池出水,其氨氮含量为61.5~270mg/L。

1.4分析方法

COD:快速法;氨氮:滴定法;NO3-N:紫外分光光度法;NO2-N:α萘胺光度法。

2结果与分析

2.1污泥培养及反应器启动

1999年8月19日取宝钢焦化厂的回流污泥(MLSS=3338mg/L)作为接种污泥,在18L的容器中进行驯化。驯化期内按SBR工艺运行(进水为6h、曝气为16h、沉淀排水为2h、排水量为8L)。将上海焦化厂调节池出水用自来水按1∶1稀释(COD约为570mg/L)作为进水,4d后稀释比例变为3∶1(COD约为780mg/L),再经4d后变为9∶1,到8月30日直接用原水(COD约为1150mg/L)作为进水。9月26日将污泥经沉淀浓缩后移入15L的反应器,同时开始用膜排水(排水量变为11L)。

2.2系统的硝化效果

运行初期在保证一定温度、pH值、DO的条件下,进水氨氮<240mg/L时的出水氨氮均为5mg/L以下,达到了很好的氨氮去除效果。春季硝化启动后系统进、出水氨氮的变化见图2,相应的污泥负荷与污泥浓度的变化见图3。

由于采用了膜生物反应器,系统的硝化具有以下几方面的特点:

①强化了对氨氮的去除

运行初期微生物代谢产物的积累比较少,微生物的活性尚未受到影响,此时系统具有较高的处理效率,以氨氮去除计算的容积负荷最高可达0.19kg/(m3·d),而出水氨氮<1mg/L,对氨氮的去除率为99.9%;若采用A/A/O工艺处理水质相似的废水,当进水氨氮负荷<0.1kg/(m3·d)时才能保证出水氨氮<10mg/L,而氨氮负荷>0.18kg/(m3d)时,出水氨氮>40mg/L,去除率降至50%以下。

采用膜生物反应器可以取得很好的氨氮去除效果的原因在于:在反应器内保持了较高的污泥浓度,降低了F/M值,减弱了异养菌对DO的竞争,有利于硝化反应的进行;反应器内微生物絮体较活性污泥法的细碎,污泥呈分散生长,有利于氧的传质;膜的截留作用使微生物不会随出水流失,硝化菌得以在反应器内富集成为优势菌种,使氨氮的转化更为彻底。

②短程脱氮

处理污水氨氮的方法篇6

关键词:碳化稻壳;粒径;废水;氨氮

1.水污染现状

随着我国国民经济的不断发展,在经济发展与生态环境的冲突中,环境问题己经上升为全球问题,成为衡量一个国家或地区可持续发展程度的重要指标。在环境问题中最为突出的是水污染问题。目前,我国有2/3的河流已经被污染,其中海河流域水污染最为严重。水环境的恶化加剧了水资源的短缺,影响着人民群众的身心健康,这已经成为制约我国可持续发展的重要因素。

2.氨氮污染的危害

氮、磷污染是指随着人类对环境资源开发利用活动的日益增加,大量含氮、磷的各种洗涤剂、工业原料、农业肥料的生产过程以及人体的排泄物等物质排入江河湖泊中,增加了水体营养负荷,其直接后果是引起水体的富营养化。

(1)生成氯化氰剧毒副产物。水中有氨及有机物存在时,加入氯后,将产生氯化氰。氯化氰在人体中迅速代谢生成氰化物CN-,世界卫生组织在1993年提出的“饮用水水质准则”中,指导值为70μg/L,在用氯和氯胺消毒的水中,检出的氯化氰的浓度分别为0.4μg/L和1.6μg/L。

(2)影响水中有机物的氧化效率。在处理受到污染的原水时,往往在常规水处理工艺后,继之以臭氧--生物活性炭处理工艺。一般希望既能去除水中的有机物,又能去除水中的氨氮。氨氮在生物活性炭滤池中在亚硝化菌及硝化菌的作用下,通过水中的溶解氧氧化,使之转化成硝酸盐,每氧化1mg/L氨氮,要消耗溶解氧4.57mg/L。

(3)生物体产生不良的影响。氨氮污染物不仅造成水体生态系统功能紊乱,还将给生物体造成不良的影响。高浓度氨氮进入接纳水体,将消耗水体中的溶解氧,造成水体缺氧,危害水生动物,致使水体出现恶臭味道、水质下降。一些藻类的蛋白质毒索,可富集在水产生物体内,并通过食物链使人中毒。其中蓝藻门的藻类毒性最强,污染范围广且最严重,产生的毒素危害鱼和家畜。氨氮在水中微生物作用下转变为化合态的硝态氮和亚硝态氮,对人和生物的毒害作用更大。

3.氨氮污染的治理技术

由于氨氮废水对水体的不良影响,而使对其处理显得日趋重要,去除水中的氮对缓解我国目前严峻的水体污染形势有重要意义。目前,国内外废水脱氮方法有许多,主要有物理化学法、生物法和化学法。

4.本项研究的目的与意义

我国是世界上最大的水稻种植国家,据农业部的统计,2005年我国稻谷产量18059万吨,稻壳通常占稻谷的20%,照此计算,稻壳资源十分丰富。本文研究主要以碳化稻壳为吸附基质探讨其对生活污水中氨氮的去除效果,以期为我国研发廉价、处理效果好的污水净化剂提供基础资料。

5不同粒径的碳化稻壳对污水中氨氮的净化效果分析

5.140目的碳化稻壳对氨氮的净化效果分析

由图2可知,40目的碳化稻壳对氨氮的吸附量呈现增加后减少的趋势,与20目的趋势相同。在前4天,吸附量迅速增加。第5天与第4天的吸附量相同。由曲线图的公式可以算出,第4.2天时,吸附量达到最大值。第6天以后,吸附量减少,第11天为最小值0.05mg/g。

5.260目的碳化稻壳对氨氮的净化效果分析

从图3可以看出,60目下碳化稻壳对氨氮的吸附量继续遵循上述趋势。前4天吸附量呈上升趋势,并在第4天达到吸附量的最大值。随后几天里,吸附量不再增加,基本保持不变。7天后,吸附量随时间不断减小。和上图比较,得知60目的碳化稻壳对氨氮的吸附量值比40目下的吸附量明显升高。

5.380目的碳化稻壳对氨氮的净化效果分析

由图可知,80目时碳化稻壳对氨氮的吸附量的变化趋势与前面基本相似,但起伏并不如前面明显。前3天吸附量呈上升趋势,第4天、第5天的吸附量均不在变化,与第3天相同。第6,7,8天变化不大。第11天时,吸附量有所减少,为0.075mg/g。

可以看到,80目的碳化稻壳对氨氮的吸附量比60目的吸附量高出很多。由于80目的碳化稻壳的粒径很小,磨的很细的固体会具有很大的比表面积,所以80目的碳化稻壳的吸附能力非常强。

5.4100目的碳化稻壳对氨氮的净化效果分析

由图可见,100目的碳化稻壳对氨氮的吸附量的变化趋势与80目的非常相似。前3天吸附量逐渐升高。随后的六天,吸附量并无变化,均为0.078mg/g。在试验的最后3天,吸附量有所下降。

结论

1.碳化稻壳吸附氨氮的过程中,吸附量随时间而改变,总是先增大后减少,并且在第5天左右达到吸附量最大值。

2.在本实验的研究范围内,随着碳化稻壳粒径的减小,吸附量增加,并在100目时达到吸附量的最大值。即通过减小粒径,提高碳化稻壳除氨氮的效果。

参考文献

[1]柳来栓,刘有智.旋转填料床处氨氮废水的技术经济分析.化学工程师.2003.84(3):42-44

  • 下一篇:水电工入门基础知识(6篇)
    上一篇:合同续签请示范文(收集3篇)
    相关文章
    1. 合同续签请示范文(收集3篇)

      合同续签请示范文篇1榆林综合服务有限责任公司:我酒店使用的两部乘客电梯(型号:GPS-2),由上海三菱电梯有限公司生产,于20xx年安装调试且投入使用,至今已使用十二年之久。按照《..

      daniel 0 2024-10-27 12:22:00

    2. 2023年党员个人工作总结范文(收集6

      2023年党员个人工作总结范文篇1自年初开展保持党员先进性教育活动,党员个人先进工作总结。四个多月来,在卫生局党支部保持党员先进性教育领导小组的领导下,在站党支部领导的精..

      daniel 0 2024-10-26 22:22:00

    3. 《万历十五年》读后感范文(整理6篇

      《万历十五年》读后感范文《万历十五年》很有名,我也已经读过好几遍了。近来再重读一遍,又有了一些新的感受。中国古代政治的最鲜明特点是观念治国。早在国人历史早期,古人便..

      daniel 0 2024-10-26 09:19:57

    4. 爱岗敬业心得体会范文大全(整理6篇

      爱岗敬业心得体会范文大全作为一名营业员,每天站在柜台前,面对着各式各样的顾客,我始终以热情、专业的态度对待每一位顾客。爱岗敬业,对我而言,就是用心去服务,用微笑去传递温暖..

      daniel 0 2024-10-23 20:41:20

    5. 学校校长心得体会范文(整理6篇)

      学校校长心得体会范文教师是学校的灵魂,他们的专业素养和教学能力直接影响着学校的教学质量。因此,作为校长,我始终将师资建设放在重要位置。我们积极引进优秀教育人才,为教师..

      daniel 0 2024-10-23 04:51:15

    6. 销售管理个人工作计划范文(整理6篇

      销售管理个人工作计划范文2024一、加强对销售工作的认识1、市场分析,根据市场容量和个人能力,客观、科学的制定出销售任务。2、适时作出工作计划,制定出月计划和周计划。并定..

      daniel 0 2024-10-21 16:04:54

    7. 党员个人年度总结范文(收集3篇)

      党员个人年度总结范文篇1一.车间工作上我在工作上一直以来都是听从领导的安排和吩咐,听从公司的话和命令。只要是车间需要我的地方,只要是车间安排的工作我都努力的、认真的..

      daniel 0 2024-10-21 12:22:16

    8. 《驼铃与帆影》读后感范文(整理6篇

      《驼铃与帆影》读后感范文在这个骄阳似火的夏天,我在读《驼铃与帆影》这本书,读着读着,我不知不觉的被这本书深深地吸引住了。仿佛亲自去探寻丝绸之路而归来,既感到紧张奇异,又..

      daniel 0 2024-10-20 16:03:52

    9. 幼儿园大班幼儿毕业评语(整理10

      12.2023幼儿园大班幼儿毕业评语二 你是个聪明大方又可爱的小女孩。这学期你的表现很能干,能主动和老师说一些自己发生的事。你上课

      栏目名称:办公范文 0 2024-10-27

    10. 部队班级年终工作总结(收集6篇)

      部队班级年终工作总结篇1今年来,在支队党委的正确领导和业务部门的有力指导下,我们班始终以“”重要思想为指针,以政治合格、军事过

      栏目名称:办公范文 0 2024-10-27