高中数学知识点总结及公式

daniel 1 2026-01-06

1.集合的有关概念。

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

2)集合的表示方法:常用的有列举法、描述法和图文法

3)集合的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N*

2.子集、交集、并集、补集、空集、全集等概念。

1)子集:若对x∈A都有x∈B,则A B(或A B);

2)真子集:A B且存在x0∈B但x0 A;记为A B(或 ,且 )

3)交集:A∩B={x| x∈A且x∈B}

4)并集:A∪B={x| x∈A或x∈B}

5)补集:CUA={x| x A但x∈U}

注意:①? A,若A≠?,则? A ;

②若 , ,则 ;

③若 且 ,则A=B(等集)

3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与 、?的区别;(2) 与 的区别;(3) 与 的区别。

4.有关子集的几个等价关系

①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;

④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

5.交、并集运算的性质

①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;

③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;

6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

高中数学知识点总结及公式:基本初等函数

从其中一个顶点向一个边引一条线,交另一边上某一点,则这个图形变成有一条公共边且另一组边在同一直线上的两个三角形。有六个内角,其中公共边与另一组在同一直线上的边相交形成的两个角中,每一个角都是一个三角形的一个内角,且是另一个三角形的一个外角……

另外还有大于平角小于周角的角。

正弦函数 sinθ=y/r

余弦函数 cosθ=x/r

正切函数 tanθ=y/x

余切函数 cotθ=x/y

正割函数 secθ=r/x

余割函数 cscθ=r/y

同角三角函数间的基本关系式:

·平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

·积的关系:

sinα=tanα*cosα

cosα=cotα*sinα

tanα=sinα*secα

cotα=cosα*cscα

secα=tanα*cscα

cscα=secα*cotα

·倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

一个园,弧长和半径相等时所对应的角度是1弧度.弧度和角度的换算关系:

弧度*180/(2*π)=角度

诱导公式★

常用的诱导公式有以下几组:

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)


高中数学公式定理记忆口诀

  《集合与函数》

  内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

  复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

  指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

  函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

  正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

  两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

  求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

  幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

  奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

  《三角函数》

  三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。

  同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

  中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,

  顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,

  变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

  将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

  余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

  计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

  逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

  万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

  1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;

  三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

  利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;

  《不等式》

  解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

  高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

  证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。

  直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

  还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

  《数列》

  等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。

  数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,

  取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:

  一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:

  首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。

  《排列、组合、二项式定理》

  加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。

  两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。

  排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

  不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。

  关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。

  《立体几何》

  点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。

  垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。

  方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。

  立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。

  异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。

  《平面解析几何》

  有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

  笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。

  两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

  三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

  四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

  解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

  高中数学学习方法

  课内重视听讲,课后及时复习。

  新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

  适当多做题,养成良好的解题习惯。

  要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

  调整心态,正确对待考试。

  首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

  在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

高中数学公式大全【三角函数万能公式】

  (1)(sinα)^2+(cosα)^2=1

  (2)1+(tanα)^2=(secα)^2

  (3)1+(cotα)^2=(cscα)^2

  证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可

  (4)对于任意非直角三角形,总有

  tanA+tanB+tanC=tanAtanBtanC

  高中数学公式大全【降幂公式】

  公式

  高中数学公式大全【等比数列公式】

  通项公式

  推广式

  求和公式

  Sn=n*a1 (q=1)

  Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1)

  S∞=a1/(1-q) (|q|<1且n-> ∞)

  (q为公比,n为项数)

  S=(末项×公比-首项)÷(公比-1)

  求和公式推导

  (1)Sn=a1+a2+a3+...+an(公比为q)

  (2)q*Sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+an+a(n+1)

  (3)Sn-q*Sn=(1-q)Sn=a1-a(n+1)

  (4)a(n+1)=a1*q^n

  (5)Sn=a1(1-q^n)/(1-q)(q≠1)


  • 下一篇:小学班主任工作总结范文2则
    上一篇:新人教版七年级上册历史知识点总结【整理】
    相关文章
    1. 检验员试用期工作总结(收集5篇)

      检验员试用期工作总结篇1在试用期中,我得到了各位领导的精心教导和同事们的热情帮助,在此表示衷心感谢。下面,将一个月来的工作情况以个人工作总结的形式汇报如下:1.工作质量、..

      daniel 0 2026-01-06 18:28:33

    2. 检验员试用期工作总结(收集6篇)

      检验员试用期工作总结篇1在本部门的工作中,我一直严格要求自己,认真及时做好领导布置的每一项任务,同时主动为领导分忧;专业和非专业上不懂的问题虚心向同事学习请教,不断提高充..

      daniel 0 2026-01-06 18:28:12

    3. 检验员试用期工作总结(收集4篇)

      检验员试用期工作总结范文篇1时间一晃而过,转眼间试用期已接近尾声。这是我人生中弥足珍贵的经历,也给我留下了精彩而美好的回忆。在这段实习期中可以说是有喜也有忧。喜的是..

      daniel 0 2026-01-06 17:26:08

    4. it试用期员工工作总结(收集8篇)

      it试用期员工工作总结篇1三个月的试用期下来,自己努力了不少,也进步了不少,学到了很多以前没有的东西,我想这不仅是工作,更重要的是给了我一个学习和锻炼的机会。从这一阶段来看..

      daniel 0 2026-01-06 17:25:49

    5. 新人教版七年级上册历史知识点总结

      新人教版七年级上册历史知识点总结1  早期国家的产生和发展  (一)夏朝的兴衰(夏朝是奴隶社会的形成时期)  1、 建立:约公元前 2070 年, 禹 建立夏朝,这是我国历史上第一..

      daniel 1 2026-01-06 17:25:14

    6. 员工转正工作总结范文3篇

      【第1篇】员工转正工作总结时间一晃而过,转眼间两个月的试用期已接近尾声。20__年_月__日,我有幸来到公司工程部工作,在这短暂的两个月中,在公司领导的亲切关怀和指导下,在同事们..

      daniel 1 2026-01-06 17:24:05

    7. 试用期工作总结简短500字(11篇)

      试用期工作总结篇1本人于20XX年X月X日加入湖南湘仪实验室仪器开发有限公司,在为期三个月的试用期内,通过上级领导、品管部和相关各部门的各位同事的指导和帮助,加上自己的努力..

      daniel 0 2026-01-06 17:23:15

    8. 小学班主任工作总结范文2篇

      小学班主任工作总结平凡的班主任工作,是让学生提高能力、养成习惯、塑造人格的工作,又是一件琐碎、繁忙的工作。因此,要做好这项工作,必须花很大的精力和努力。在领导的关心、科..

      daniel 1 2026-01-06 17:23:07