变频技术范例(3篇)

daniel 0 2024-05-15

变频技术范文

一台施耐德变频器,频率只能上到20Hz,检查了各项参数,发现最高的频率上限均为50Hz,由此排除了参数的问题。再检查是不是给定方式不对,改成面板给定频率,变频器最高可运行到50Hz,因此,判断是模拟量输出电路出现了问题,检查后,发现一贴片电容损坏,更换后,变频器频率调节恢复正常。

2变频器过热

这几台使用不到一年的变频器,复位开车后还是可以正常的运行,只不过几个小时候又发生同样的故障,检查电动机没有发现问题,但注意到变频器的通风口风量很小,于是把变频器拆开检查,发现这几台变频器有的因为散热风扇烧坏,有的因为风扇保险烧坏,更换风机后,此类情况就没有在出现。4)过压和欠压。一台施耐德的变频器出现过压,总是在停机时跳“OU”,这个时候我们可以重点检查制动回路,测量放电电阻没有问题,测量制动管被击穿,把制动管换掉之后,便没有出现这个问题。出现欠压情况的DANFOSS变频器,在加负载后出现“DCLINKUNDERVOLT”,经过仔细检查问题不是特别的复杂,应该重点检查整流桥,经过检查整流桥发现有一路桥壁开路,更换后问题解决。

3故障出现的原因和应对方法

3.1不能调高频率的变频器

分析原因后得出结论,是因为电动机安装在外面,现场对于电动机保护不当,下雨时不能对电动机及时防雨,造成了电动机受潮,雨后也未能对电动机烘干,造成了电动机内部局部发生短路现象。这样的情况比较容易解决,只要做好对电动机的保护工作,增加电动机防雨系统,及时检查电动机,如有受潮的情况及时烘干。

3.2变频器频率上不去

变频器调频,发现频率调不上去时,首先看各项参数是否正常,如果参数问题排除,可以检查给定方式,如果都排除了,那么就知道是模拟量输出电路出现了问题,仔细检查模拟量输出电路,找出问题所在,排除问题。

3.3变频器过热

这个问题最终很显然是因为变频器的通风排热系统出现问题,散热风扇的质量过于粗制劣造,造成不必要的麻烦。应该选用正规厂家合格的有质量保证的变频器,及时的跟变频器厂家沟通散热排风扇的质量问题。

3.4过压和欠压

变频器过压和欠压是两个不同的故障,所以有不同的原因和应对方法。变频器过压报警,主要原因是因为减速的时间太短,或者制动单元出现了问题。变频器在减速的时候,电动机转子绕组切割旋转磁场的速度加快,转子的电流增大,电机从而处于发电的状态。这个时候,我们就要认真检查制动回路,发现问题,然后换掉出现问题的部分。欠压报警主要原因在于整流桥某一个部位的损坏,刚才也已经举了一个例子,是整流桥有一路桥臂开路。出现变频器欠压的问题,就要仔细检查整流桥,查看问题的部位并撤换掉。

3.5变频器的运行环境

在一些工厂内,空气中的粉尘和蒸汽含量很高,所以变频器一半在现场的控制柜中保护,为了更好的散热,就在控制柜上安装了冷却风扇[3]。变频器的各个部分的电缆都从控制柜的底部连接变频器,导致控制柜封闭不严,粉尘和蒸汽可以通过控制柜的底部进去到控制柜影响变频器。

4针对变频器出现故障的原因提出对策和建议

1)变频器的控制柜。建议把变频器的控制柜移到室内,把变频器的防护等级提高到IP54,防止粉尘和蒸汽进入到变频器内。2)变频器的选择。根据不同的负载选择恰当的变频器,保证变频器的正常运行。3)变频器电源柜的改变。可以把供电给变频器的电源柜改为馈电柜,从而可以避免操作人员对变频器进行多次强制复位,保护变频器不受人为破坏。4)关于长期不用的变频器和变频器电容器。长期用不到的变频器,要定期进行带电运行,这样可以对变频器内件进行充电式的保护。如果有时间和条件,对使用多年的变频器的电容器进行测试。

5结语

变频技术范文篇2

1原文转述

在《SPWM变频调速应用技术》中第226页中7.1.2关于恒压供水主方案的讨论一节中原文摘录如下:

7.1.2关于恒压供水主体方案的讨论

通常,在同一路供水系统中,设置两台常用泵,供水量大时开2台,供水量少时开1台。在采用变频调速进行恒压供水时,存在着一个用1台变频器还是2台变频器的问题,讨论如下:

1.1台泵的变频调速方案这也是应用得较为普遍的方案。其控制过程是:用水少时,由变频器控制1号泵,进行恒压供水控制。当用水量逐渐增加,1号泵的工作频率达到50Hz时,将其电动机切换成由工频电源供电。同时,将变频器切换到2号泵上,由2号泵进行补充供水。反之,当用水量逐渐减少,即使2号泵的工作频率已降到0Hz,而供水压力仍偏大时,则关掉1号泵,同时迅速升高2号泵的工作频率,并进行恒压控制。

此方案的主要特点是:

(1)只用1台变频器,故设备投资少。

(2)如果用水量恰巧在1台泵全速供水量的上下变动时,将会出现供水系统来回切换的状态。为了避免这种现象的发生,可设置压力控制的“切换死区”。举例说明如下:

设所需供水压力为200Pa,则可设定切换死区范围为200Pa~250Pa,控制的方式是,当1号泵的工作频率上升至50Hz时,如压力低于200Pa,则进行切换,使1号泵全速运行,2号泵进行补充。当用水量减少,2号泵已完全停止,但压力仍超过200Pa时,先暂不切换,直至压力超过250Pa时,再行切换。

(3)本方案取用电功率的计算举例如下:

设每台泵的拖动电动机容量为PMN=100KW,全速时的供水流量为QN。泵的空载损耗为P0=0.1×100KW=10KW,且设在调速过程中,P0≈Const,则全速时实际用于泵水的功率为Pp=(100-110)KW=90KW。

又设每天的平均总供水流量为140%QN,则1号泵为全速,其平均取用功率为

PM1=PMN=100KW

2号泵的平均转速为额定转速的40%,其平均取用功率为

PM2=(10+0.43×90)KW=15.8KW

两台泵取用的总平均功率P∑为

P∑=(100+15.8)KW=115.8KW

2.2台泵的变频调速方案2台水泵的电动机都由变频器控制,或用2台变频器分别控制2台电动机,或用1台容量较大的变频器同时控制2台电动机。后者控制较为简单,但前者的机动性较强,即使一台变频器出了故障,另一台仍可使用,转为1台泵的变频调速方案。

采用2台泵的变频调速方案的设备费用较高,但运行时的节能效果却要好得多。仍以上面的例子为例,计算如下。

采用2台泵的变频调速方案时,供水流量可由2台水泵平均分担,则每台的平均供水流量为70%QN,每台电动机的取用电功率为

PM1=(10+0.73×90)KW=40.9KW

2台水泵共用功率为

P∑=40.9×2KW=81.8KW

2商榷分析

2.1基本相似关系

当一台泵抽同一种液体仅转速不同时,可得出所谓“比例律”公式,即

Q1/Q2=n1/n2---------------------------------------------1

H1/H2=(n1/n2)2----------------------------------------2

N1/N2=(n1/n2)3----------------------------------------3

式中N1、N2指水泵轴功率,此功率已包含了水泵的容积损失功率、机械效率损失功率、水力损失功率等。

当水泵的转速改变后,水泵的其它工作参数也随着改变,一般来讲,水泵不允许在额定转速的基础上作升速运行,但降速运行是可以的,但也不应在临界转速之下长期运行。一般来讲降速范围在(60%--100%)额定转速范围内运行是安全稳定的,“比例律”也是准确的。

已知转速为n的某泵Q—H性能曲线,如果把水泵的转速降至n1时,按比例律公式1与2可绘出Q1—H1曲线,但在运用比例律公式时应注意,它们仅适用于同一条相似工况抛物线上的不同点。所以,当已知A1点(Q1H1)及n时,首先要求出通过A1点(Q1H1)工况的相似抛物线,此抛物线也通过转速为n1的A2点(Q2H2),按比例律公式进行计算求相似工况点的方法如下:

根据比例律公式可得出

H1/Q12=H/Q2=K

H=KQ2

若已知A1点(Q1H1),则可求出K值,在Q--H曲线图上假定几个流量,就可作出H=KQ2的相似工况抛物线,此曲线不但通过A1点(Q1H1),而且与水泵转速为n1的性能曲线相交于A2点(Q2H2)。但管道特性曲线与相似工况抛物线不是一回事,两者重合的可能性很小,故在实际应用时一定要注意概念的区分,以免发生错误。

当Q—H需不变时,即某工程系统净扬程为H净,管道已确定时,见图一所示,其在不同转速下的运行工况点应为点A3(对应转速为n1)、点A1(对应转速为n),但点A1与A3由于工况不相似,故不能用相似律公式计算。点A3(对应转速为n1)与点A4(对应转速为n)才是相似的工况点,如果水泵在转速为n1下运行时,A3点是否在稳定运行区,要看对应的相似点A4是否在稳定运行区,如果A4点是水泵的稳定运行区,则A3点就是稳定运行区,否则就不是,在工程中选择设备时一定要注意运行工况范围,所选水泵的工况范围区间应包含A1和A4点,这样系统运行是稳定的、安全的和可靠的。不然就会使工程不能充分发挥效益,甚至造成不必要的浪费。

图一水泵及管道性能曲线

2.2边界条件分析

在《SPWM变频调速应用技术》中的恒压供水主方案的讨论,对设置一台变频器与二台变频器系统所需的轴功率计算,忽略了边界条件,其边界条件是管道特性与工况相似抛物线完全重合的特殊情况,且系统不是恒压供水系统,应是图二所示的水平供水系统,当管道末端所需流量小时系统压力也小,管道末端所需流量大时系统压力也大的输水系统,且系统的净水位差为零,即管道特性曲线必须经过零流量点。在这样的前提下,书中的计算结果才是正确的,但书中的结论还不确切。

2.3书中计算误区

书中例子假如每天平均总供水流量为140%QN,则1号泵为全速,其平均取用功率为PM1=PMN=100KW,此刻的100KW为拖动电动机的容量,而不是水泵运行所消耗的轴功率,不能以此进行相似律的计算。参见图一,2号泵的平均转速为额定转速的40%,其所需功率不是15.8KW,因为消耗15.8KW功率所对应的工况点为水泵全速运行的工况点A1(Q1H1)的相似抛物线上对应的40%运行工况点A2(Q2H2),而对应40%额定流量下恒压运行的工况点应该是工况点A5(Q2H1),此点消耗的功率要比15.8KW大。恒压运行各转速下的工况点是压力为某一给定的数值,即水泵运行的点为一平行于Q轴的过A1(Q1H1)线上的点,而不能用管道特性曲线上的点或相似抛物线上的点来对应关系。

同样采用2台变频调速的方案,则平均每台供水流量为70%Qr,则每台水泵所需功率

图二输水系统示意图

不是40.9KW,2台水泵共用功率也不是81.8KW了。

2.4列例说明

我们讨论问题的前提是恒压供水系统,在此前提下必须是恒压控制,那么在这种条件下选择一台变频还是两台变频,其节能效果确如书上所计算的那样吗?其经济技术的合理性到底怎样呢?同样我们以例子进行计算分析。系统各流量下水泵所需轴功率进行了计算,见表一。

Q总(m3/s)

1.1Qr

1.2Qr

1.3Qr

1.4Qr

1.5Qr

1.6Qr

1.7Qr

1.8Qr

1.9Qr

一一

台台

变工

频频

Q

0.023

0.046

0.069

0.092

0.115

0.138

0.161

0.184

0.207

H

45

45

45

45

45

45

45

45

45

η

20%

42%

58%

71%

76%

81%

83%

83%

82%

P

50.8

48.3

52.5

57.7

66.8

75.2

85.6

97.9

111.4

二台泵P轴(KW)

176.2

173.7

177.9

182.6

192.2

200.6

211

223.3

236.8

Q

0.1265

0.138

0.1495

0.161

0.1725

0.184

0.1955

0.207

0.2185

H

45

45

45

45

45

45

45

45

45

η

79%

81%

82%

83%

83%

83%

82%

82%

82%

P

55.8

75.2

80.5

85.6

91.7

97.9

105.2

111.4

117.6

二台泵P轴(KW)

111.6

150.4

161

171.2

183.4

195.8

210.4

222.8

235.2

二台变频较一台变频对比节能(KW)

64.6

23.3

11.9

11.4

8.8

4.8

0.6

0.5

1.6

每天运行10小时计消耗电能(KWh)

646

233

119

114

88

48

6

5

16

每度电按0.8元计每年耗电费(万元)

18.86

6.8

3.47

3.33

2.57

1.4

0.18

0.15

0.47

一台变频控制装置设备价格(万元)

20

20

20

20

20

20

20

20

20

预计收回成本年限

1

3

6

6

8

14

111

133

43

表一设置一台和二台变频器的技术经济比较表

假设系统设二台12sh-9A泵,以此为例对恒压供水主体方案进行计算分析讨论,以更为直观地使大家判断出选择几台变频控制设备更为合理。设每台水泵在额定工况下Hr=45m

Qr=0.23m3/sη水=81%P轴=125.4KW配套电动机P电动机=160KWn=1470r/min恒压变频控制压力整定为H=45m,分别对系统所需流量为1.1Qr、1.2Qr、1.3Qr、1.4Qr、1.5Qr、1.6Qr、1.7Qr、1.8Qr、1.9Qr进行计算水泵所需轴功率。

当系统所需流量为1.1Qr即0.253m3/s时,分别对设置一台变频器、二台变频器方案进行计算。

i)当设置一台变频器时,即一台工频运行,一台变频运行。变频运行的泵的流量为0.023m3/s,此时水泵扬程为Hr=45mη水=20%P轴=50.8KW,二台泵的轴功率为176.2KW。

ii)当设置二台变频器时,则二台泵同时进行变频运行。每台变频运行的泵的流量为0.1265m3/s,此时水泵扬程为Hr=45mη水=73%P轴=76.5KW,二台泵的轴功率为153KW。其节能23.2KW。

综合看二台变频装置确实节能,但节能效果不是象书中所述的那样,从表一可以看到,当系统所需的流量在额定流量85%范围内运行,那么选择一台变频装置为经济合理;若系统运行流量变化很大,但在小流量下运行时间很短,那么也没有必要为此设置二台变频装置;若系统所需流量在额定流量的55%以下长期运行,那么应考虑增加机组台数与增加变频装置数量的综合经济比较后确定更为合理的方案。

变频技术范文

关键词煤矿机电设备;变频技术;节能

煤矿产业发展关乎国计民生,随着我国产业结构转型升级,国家对于节能减排投入大量的财力、物力、人力,人们对于生存环境的要求进一步严格,第二产业面临着重要的历史性转折,以煤矿为代表的相关产业逐渐向高效、低能、无污染方向发展。变频技术应运而生,人们对于变频技术的了解局限于小家电中,例如空调等,煤矿机电设备中变频技术的应用是煤矿产业走向可持续发展的关键。本文通过对变频技术的原理分析、投入到煤矿机电设备的必要性和重要性以及变频技术在煤矿机电设备意义。

1变频技术的应用原理

变频技术是一种能够将电信号的频率按照具体电路要求进行变换的应用型技术,是一种频率变化,而非电能变化,具体类型包括整流技术(交—直变频技术)、斩波技术(直—直变频技术)、电子震荡,电力逆变(直—交变频技术)、移相技术(交—交变频技术)。随着变频技术日益往高度集成化、高频化、模块化发展,它的发展方向主要有3点:一是交流变频向直流变频转化;二是控制技术由脉宽调制向脉幅调制转化;三是功率器件向高集成智能功率模块转化。变频技术在煤矿机电设备的研究和应用越来越广泛和深入,它能够使煤矿设备运行状态更加平稳、速度控制更加自动化、设备工作效率更高、能源消耗更低。

2变频技术在煤矿机电设备应用意义

随着我国对能源的利用率以及节能减排提出了新的要求,煤矿产业结构、生产技术同步走向转型升级的道路,变频技术在煤矿机电设备中的应用前景广阔,该技术在安全生产、设备维护成本节约、设备间匹配融合、生产集约化专业化等多方面有着不可替代的重要作用。变频技术是应运而生的一项全新的实用型技术,在煤矿机电设备中的应用中,对提高煤矿资源的开采效率、促进机电设备的高效运行,确保生产环境安全等诸多方面都发挥着重要的作用。

3变频技术在煤矿机电设备中的主要应用方式

3.1变频技术在输送系统中的应用

在煤矿开采工程中,如何保证输送系统的正常、稳定、高效运行一直是个困扰我们的难题,传统的采用液力耦合器来实现皮带机的软启动,非常容易造成输送皮带的撕裂和结构磨损老化。变频技术在输送系统中的应用主要是为了降低输送系统电机启动时的电流频率大幅度波动,减少机电的机械冲击和设备发热的情况发生,同时,变频技术的应用可以有力地保证输送系统设备的稳定性,计算机技术与变频技术的完美结合能够实现自动化和智能化,煤矿输送系统相当于添加了“剂”和“计算机大脑”,进而最大程度上发挥皮带机的传送功能。

3.2变频技术在空压机中的应用

传统的煤矿机电设备中空压机的运行方式存在一定的问题,使用直接启动或者用转子串电阻起动的方式时,初始电流大,频率不稳定,波动幅度大,对电网和机械设备造成的冲击和损耗非常强烈,极大地缩短空压机机电设备的使用寿命。传统的压风系统采用的是开环控制的方式,频繁地起动设备和电动机,这种方式不能提供恒压供风,而且设备损耗也大幅度增强。变频技术在空压机的应用中,可以提供压力闭环控制及开环控制手动调节两种控制方式的选择,设备运转时,通过压力闭环控制系统,可以自主根据差值调节空压机转速,工作人员可以便利地在变频器控制柜上保持空压机的供风压力恒定为设定值。变频技术将对空压机的工作频率做出最为及时和准确的监控,当空压机的压力、温度等参数超过高限值或出现断水信号时,变频运行将自动地停止。在空压机设备中使用变频技术可以及时有效地掌握空压设备的具体运转状态,配以先机的预警装置,既可以实现远程控制,同时可以保证机械设备的稳定性、安全性。

3.3变频技术在水泵中的应用

开采煤矿时,水流量长期保持变工调节的运行状态,当水泵调节水流量时,传统的方式是通过阀门开度的机械调节来完成的,这样的方式会严重损害水泵电机设备的稳定性和持续性,进而降低它的使用寿命。应用变频技术后,在同一排水量的基础上,水泵机电设备的功率和电流会明显下降,变频技术可以自由地控制抽水泵的起停,根据实际需求掌控电机的加减速,减少了水泵空转的时长和大量起停导致能源消耗,水泵电机设备的损耗也能在很大程度上减少,同时还能降低设备的机械冲击,耐久度会明显提升,进而降低了水泵的维护、修复成本。

3.4变频技术在风机中的应用

矿井必须保证通风,这既关系到生产问题,还关系到矿工的安全问题,传统的矿井保证通风的手段是定期更换不同的通风机的方式,这种方式造成了极大的资源浪费,不符合成本节约、可持续发展的思路。在煤矿风机设备中应用变频技术,能够有效解决频繁更换通风机的难题,以变频技术为核心支撑的风机可以根据矿区实时环境、闭通程度自主调节风速和出风量,并且实现全局覆盖,节约了大量传统通风机长期额定转速运转消耗的能源和经济成本。

4结论

我国经济发展迅猛,经济建设和人们日常生活对于传统能源的需求和要求进一步加大。煤矿产业在新形势下要更好地迎合时展需要,变频技术能够更好地提高煤矿机电设备水平,能够在不断提升设备工作效率的基础上起到节能减排的效果。但是我国变频技术研究起步晚,重要领域的技术难题尚未攻破,因此我们需要通过不断的实践、专研以完善变频技术在煤矿机电设备中的应用术在我们的应用,真正实现煤矿生产安全化,效率最大化,能源资源消耗最低化和产出最优化。变频技术是对传统生产的一种突破,如何利用好变频技术的现实应用问题是我们在生产环节的一个重要思考内容。我相信,变频技术在煤矿机电设备中的应用将越来越广泛,逐渐实现效益化,煤矿产业也能迎来新的春天。

参考文献

[1]张继东.煤矿机电设备预防性检修的有效措施[J].内蒙古煤炭经济,2016(Z2):102-103.

[2]李德胜.煤矿机电设备关键故障及维修策略[J].中国高新技术企业,2016(11):147-148.

[3]宋洪庆.煤矿机电设备安全管理浅析[J].黑龙江科技信息,2016(8):156-157.

[4]杨海鹏.浅谈煤矿机电设备的维护与维修[J].能源与节能,2015(2):98-100.

[5]蔺子轩.煤矿机电设备检测及故障维修[J].中国新技术新产品,2015(11):123-124.

[6]夏冬梅.浅谈煤矿机电设备技术故障及对策[J].机械管理开发,2015(3):189-190.

  • 下一篇:家风家训征文优秀(精选8篇)
    上一篇:日常生活中的纳米技术范例(3篇)
    相关文章
    1. 日常生活中的纳米技术范例(3篇)

      日常生活中的纳米技术范文篇1关键词:纳米技术;化学;化学工业1纳米技术概况纳米,又称毫微米,是度量长度的单位,1米(m)=109纳米(nm),从换算关系中可见这是一个极小的单位,如果再形象一些,..

      daniel 0 2024-05-15 16:40:13

    2. 变频技术论文范例(3篇)

      变频技术论文范文【关键词】:风机控制系统;节能技术;改造;变频器;应用【分类号】:TP391.72众多的文献资料及工程实践表明,发电厂中发电机组消耗了全厂用电总量的80%左右,其中尤以一..

      daniel 0 2024-05-15 16:09:00

    3. 变频供水设备范例(3篇)

      变频供水设备范文[关键词]变频调速;恒压供水;多泵并联;PLC可编程控制中图分类号:TU855文献标识码:A文章编号:1009-914X(2016)14-0245-021引言给水系统是建筑发展的重要基础设施,是国..

      daniel 0 2024-05-15 16:08:13

    4. 变频器实训总结范例(3篇)

      变频器实训总结范文关键词:项目教学法职业教育变频器现在的职业教育,就是以能力为本位、以就业为向导,通过现代教学与实训,培养学生职业能力的就业教育。一直以来传统的教学模..

      daniel 0 2024-05-15 15:37:33

    5. 变频器原理范例(3篇)

      变频器原理范文关键词:变频器谐波危害抑制1、什么是变频器的谐波?变频器谐波是变频器运行过程中,需要对输入电源用大功率二极管整流(或晶体管/逆变模块)进行逆变,在其逆变过程中,..

      daniel 0 2024-05-15 15:36:13

    6. 变频节能技术原理范例(3篇)

      变频节能技术原理6范文英那河水源泵站位于庄河市的英那河水库下游400m处,在大连市的东北部,距市中心180km。英那河泵站是大连市引英入连供水应急工程的头部工程,通过水泵加压..

      daniel 0 2024-05-15 15:04:48

    7. 畜牧兽医的职业素养范例(3篇)

      畜牧兽医的职业素养范文关键词:畜牧业;乡镇;畜牧兽医站;职能中图分类号:TU264.8文献标识码:ADOI:10.11974/nyyjs.201701320601乡镇畜牧兽医站的基本情况乡镇畜牧兽医站属全民所有..

      daniel 0 2024-05-15 15:04:13

    8. 建筑科学研究范例(3篇)

      建筑科学研究范文关键词:建筑工程预算科学控制中图分类号:F270文献标识码:A文章编号:1007-3973(2011)006-059-021前言工程预算在建筑工程的各项管理工作中占据着重要的地位,它是..

      daniel 0 2024-05-15 14:32:44