高分子材料的主要性能范例(12篇)
高分子材料的主要性能范文篇1
关键词:高分子材料抗静电技术
通常情况下,两种不同的物质表面接触的时候就会形成电荷的迁移。在理论上来说,静电是普遍存在的,我们通过高分子材料一般都具有电绝缘性,所以会在摩擦后易产生带电现象。这种静电轻则吸附灰,重则引起火灾等重大事故。所以,怎样消除积聚在高聚物表面的静电,以及防止高聚物表面产生静电作用,已成为当今高分子材料研究领域的一个热门课题。
一、防静电技术的现状
目前静电技术是有很多种的,像我们平时用的塑料以及刷墙时用的涂料都是加入了导电的粉末,还有像石墨以及炭黑和和其他每一种金属粉末以及易于离子化的很多种无机盐类等这些是都可以防静电。有机静电剂主要是包括季铁盐类等。一般常用的有机抗静电剂是表面活性剂,我们可以把它加到塑料内部之后在扩散到它的表面里,还可以用到塑料的表面上。表面活性分子中有亲水的部分还有亲油的部分。亲水的那部分就留在塑料的表面上,就在表面形成导电层,因此形成了防静电的表面层。
二、高分子抗静电的方法概述
高聚物本身对电荷泄放的性质决定了高聚物表面聚集的电荷量,它主要泄放方式为表面传导、本体传导以及向周围的空气中辐射,在这三者中以表面传导为主要途径。这是因为表面电导率一般大于体积电导率,所以高聚物表面的静电主要受组成它的高聚物表面电导所支配。因此,通过提高高聚物表面电导率或体积电导率使高聚物材料迅速放电可防止静电的积聚。抗静电剂是一类添加在树脂或涂布于高分子材料表面以防止或消除静电产生的化学添加剂,添加抗静电剂是提高高分子材料表面电导率的有效方法,而提高高聚物体积电导率可采用添加导电填料、添加抗静电剂或与其它导电分子共混技术等。
三、添加导电填料
这样的方法一般的是每种不同的无机导电填料掺入高分子材料基体中去,目前此方法中所使用的无机导电填料主要是碳系填料、金属类填料等。
四、与结构型导电高分子材料共混
导电高分子材料中的高分子是由许多小的重复出现的结构单元组成,当在材料两端加上一定的电压,材料中就有电流通过,即具有导体的性质,凡同时具备上述两项性质的材料称为导电高分子材料。与金属导体不同,它属于分子导电物质。根本上讲,此类导电高分子材料本身就可以作为抗静电材料,但由于这类高分子一般分子刚性大、不溶不熔、易氧化和稳定性差,无法直接单独应用,一般作导电填料与其它高分子基体进行共混,制成抗静电复合型材料,这类抗静电高分子复合材料具有较好的相容性,效果更好更持久。
五、添加抗静电剂法
永久性抗静电剂。永久性抗静电剂是一类相对分子质量大的亲水性高聚物,它们与基体树脂有较好的相容性,因而效果稳定、持久、性能较好。它们在基体高分子中的分散程度和分散状态对基体树脂抗静电性能有显著影响。亲水性聚合物在特殊相溶剂存在下,经较低的剪切力拉伸作用后,在基体高分子表面呈微细的筋状,即层状分散结构,而中心部分呈球状分布,这种“蕊壳”结构中的亲水性聚合物的层状分散状态能有效地降低共混物表面电阻,并且具有永久性抗静电性能。
六、我国高分子材料抗静电技术的发展状况
我国许多科研机构和生产企业已陆续开发出一些品种,以非离子表面活性剂为主,目前常用的品种有,大连轻工研究院开发的硬化棉籽单甘醇、烷基苯氧基丙烷磺酸钠、烷基二苯醚磺酸钾,上海助剂厂开发目前多家企业生产的抗静电剂十八烷基羟乙基二甲胺硝酸盐,另外该厂生产的抗静电剂硫酸二甲酯与乙醇胺的络合物、抗静电剂磷酸酯与乙醇胺的缩合物,北京化工研究院开发的三组份或二组份硬脂酸单甘酯复合物、阳离子与非离子表面活性剂复合物。从抗静电剂发展来看,高分子型的永久抗静电剂是最为看好的产品,尤其是在精密的电子电气领域,目前国内多家科研机构利用聚合物合金化技术开发出高分子量永久型抗静电剂方面已取得明显进展。
七、结语
我国的合成材料抗静电剂的行业发展的前景较好的,我们针对国内的研究以及生产都应该根据现在的需求来调整自己的产业。应该加大新品种开发的力度。近几年来国外在不断的开发高性能的抗静电材料。在我国科研院所应根据我国合成材料制品要求,开发出多种高性能、环保无毒的抗静电品种,并不断强化应用技术研究,以满足国内需求。导电机理无论是外涂型还是内加型,高分子材料用抗静电剂的作用机理主要有以下几种:抗静电剂的亲水基增加制品表面的吸湿性,吸收空气中的水分子,形成海一岛型水性的导电膜。离子型抗静电剂增加制品表面的离子浓度,从而增加导电性。介电常数大的抗静电剂可增加摩擦体间隙的介电性。增加制品的表面平滑性,降低其表面的摩擦系数。总的来看降低制品的表面电阻,增加导电性和加快静电电荷的漏泄,减少摩擦电荷的产生。
参考文献
[1]吴驰飞.有机极性低分子分散型高分子高阻尼新材料的研制[A].材料科学与工程技术——中国科协第三届青年学术年会论文集[C].2009.09.
[2]袁晓燕.天津大学材料学院高分子材料科学与工程系简介[A].复合材料.生命、环境与高技术——第十二届全国复合材料学术会议论文集[C].2010.07.
[3]陈湘宁王天文.用于最佳静电防护的本征导电聚合物的最新进展[J].化工新型材料.2008.03.
高分子材料的主要性能范文篇2
《工程材料》是高校土木工程专业的一门重要的专业课,它不仅是一门应用技术,同时又是建筑施工等课程的基础,该课程中涉及到的材料的组成及性能等内容需要学生具备一定的化学知识方能学好,因此在开设该课程前,一般都需要学生具备基础化学知识,结合《工程材料》教学内容,主要总结了小高职基础教育阶段需要前修的化学知识模块。
关键词:
工程材料;高职;化学;教学内容
哈尔滨铁道职业技术学院是一所以高铁、隧道、桥梁、建筑为主打专业的国家骨干高职院校,同时也是中国中铁集团下属唯一一所高职院校。我校每年为国家高速铁路建设、城市轨道交通建设、土木工程检测、道路桥梁建设等方面输送大量的优秀人才。作为一个历史悠久的老牌土木工程类院校,我校在大一第二学期开设了《工程材料》这门课程。由于近些年高考不断改革,高中化学知识删减了很多,又由于高考适龄生源的减少,以及一些二本院校招生门槛的降低,使得我校招生学生的素质降低,此外,作为三年制高职教学的补充,五年制高职的学生没有经过高中系统的学习,化学知识更是为零,学生的化学基础知识不能够满足《工程材料》这门课程的学习,因此,需要在讲授这门课程之前,前修一部分化学基础知识,现结合我校的实际情况,前修基础课程并没有充足的课时,也不能像高中化学教学那样,重视基础,精讲运算,因此我们针对学生后学专业课学习的内容,总结出三个必须掌握的化学知识模块,即金属元素及其化合物、硅酸盐工业基础、有机物及新型高分子材料,便于学生学习掌握,为后续《工程材料》课程的学习打下坚实的理论基础。
1金属元素及其化合物
《工程材料》主要讲述建筑材料的性能和使用条件,现阶段建筑工程中常用的金属材料又可分为黑色金属,例如钢、铁、及其合金等,还有有色金属包括铜、铝及其合金。从事土木工程建设的技术人员必须了解和掌握这些材料有关的知识,土木工程材料是一切土木工程的物质基础,材料决定了建筑的形式和施工方法,因此我们的学生要想学好这部分知识,就必须先要掌握金属元素及其化学物有关的基础化学知识。金属及其化合物知识点较多,由于学时有限,我们只能选取与专业课联系比较紧密的内容重点讲解。例如:铝、铁、铜三种金属及其化合物的性质是重点讲解的内容。铝元素存在的形式主要是铝土矿,铁元素能够以游离态的陨铁和化合态的铁矿石存在;铝粉可以制成银粉(白色涂料);铁(铬、锰)为黑金属,其余的都为有色金属;金属铝既能和强酸反应,又能和强碱反应;金属化合物与酸和碱的反应;常用的金属冶炼方法及原理,例如,电解法冶炼铝,热还原法冶炼铁,湿法冶炼铜等;其中最主要的还是工业炼钢、炼铁的原理。工业炼铁的主要原料是石灰石、铁矿石、焦炭,在炼铁高炉中发生三个化学反应这样可以得到生铁,生铁可以作为炼钢的原料,把生铁冶炼成钢的过程,就是除去大部分硫、磷等有害杂质,并且适当地降低生铁里的含碳量,调整钢里合金元素含量到规定范围之内。炼钢时常用的氧化剂是空气、氧气或氧化铁,主要化学方程式:大量铁变成氧化亚铁,调整硅、锰的含量,同时降低碳量,除去FeO,因它会使钢具有热脆性。
2硅及硅酸盐工业基础
建筑工程中把能够将散粒状材料(如砂子、石子等)和块状材料(各种砖或者砌块)粘结成为具有一定强度的整体材料,成为胶凝材料。胶凝材料根据化学成分可分为无机胶凝材料和有机胶凝材料,其中无机胶凝材料又可分为气硬性胶凝材料,例如石灰、石膏、水玻璃等,而水硬性胶凝材料主要为各类水泥。作为土木工程专业的学生,在学习这部分知识时要作为重点内容。因此我们在讲述这部分知识点时,首先要求学生要对这几种材料的化学成分、反应方程式有一定的了解,并且知道它们之间的联系。主要讲述的内容包括硅的性质及应用;二氧化硅的性质及用途,硅酸盐工业主要包括玻璃、水泥和陶瓷,这三种产品都是建筑工程中常用的材料,尤其是水泥,因此,学生要掌握这几种产品的制备原料、设备、反应原理、主要成分、特性、种类及用途。以水泥为例,其制备原料为石灰石、粘土和石膏(适量),设备为水泥回转窑,具有水硬性,水中空气中都可以硬化,是不可逆过程。
3有机物及高分子材料
随着国民经济的发展,对材料的需求越来越多,对材料的性能要求也越来越高,新型高分子复合材料越来越受到人们的重视。有机物知识点繁多,需要学生掌握的知识点主要包括:烷、烯、炔烃及笨和笨的同系物基本组成及化学性质;烃的衍生物的重要类别和各类衍生物的重要化学性质,包括卤代烃、醇、醚、酚、醛、酮、羧酸、酯,硝基化合物等等;重要的有机反应及类型,包括:取代反应、加成反应、氧化反应、还原反应、消去反应、水解反应、热裂化反应,聚合反应、中和反应;高分子材料是由可称为单体的原料小分子通过聚合反应而合成的,包括碳链高聚物、杂链高聚物、元素高聚物,四类主要高聚物反应包括:加聚成碳链、缩聚成酯链、缩聚成肽链、酚醛(或酮)缩聚。传统高分子材料包括塑料、橡胶、纤维、薄膜、胶粘剂和涂料等。其中,塑料、合成纤维和合成橡胶已经成为国民经济建设与人民日常生活所必不可少的重要材料。而新型高分子材料的性能更优越,应用更广泛,既具备了传统高分子材料机械性能,且在一定领域有特殊用途的若干种新型材料,例如有高分子分离膜、仿生的高分子材料、医用的高分子材料、液晶高分子材料、导电塑料等等。两者在化学结构和物质划分上,是基本一致的,只是合成难度上、实际用途上、出现时间上有差异。从事建筑工程的技术人员都必须了解和掌握土木工程材料的有关技术知识。土木工程材料是一切土木工程的物质基础,材料决定了建筑形式和施工方法。因此要学好这部分知识非常重要。知识的积累和学习是一个漫长的过程,不能一蹴而就,要循序渐进,要想学好专业课,就必须要先学好基础课。
作者:张巍单位:哈尔滨铁道职业技术学院基础教育学院
参考文献
[1]马兰,刘景景.基于工程教育认证的材料专业《大学化学》课程建设思考[J].教育现代化,2016(6):35-37.
[2]刘荣梅.基于化学基础知识背景的金属材料工程专业物理化学课程教学研究[J].宿州学院学报,2013(10):96-97.
[3]唐灵生.《硅和硅酸盐工业》导学[J].数理化学习(高中版),2003,(11):48-52.
[4]李培泰.讲授中专化学基础知识几法[J].中等林业教育,1999,(3):38-39.
高分子材料的主要性能范文篇3
【关键词】光伏材料;有机聚合物;器件
在当今全球能源高度紧张的背景下,由于高科技的快速发展,对太阳能发电领域的科技开发已经成为一个标志性起点,对光伏效应的太阳能电池的充分利用是当今高科技发展背景下清洁能源利用的根本目的,同时也是现代较热门的研究对象,原因在于传统无机材料的太阳能电池生产工序较为复杂,生产成本较高,设备较为昂贵,材料的选择不够便利,并且能量转换效率不理想等一系列原因,导致其发展受到了阻碍。
目前,光伏电池的发展方向主要有:进一步使太阳能电池性能得到改善、降低太阳能电池的制造成本,同时还要重视减少因大规模大批量的生产给环境带来的不利影响。近几年,由于导电聚合物的研究与开发,大大提高了开发低成本的有机聚合物光伏电池的可能性,有机光伏电池的主要具备有机化合物种类多样化,有机分子的化学结构较容易修饰,化合物的提纯与制备的加工工序较简便等主要优点,同时还较容易制造柔性器件、特别形状的期间以及大面积器件等,然而当前有机光伏太阳能电池与传统的无机太阳能电池相比,其光能与电能之间的转化能力还处于劣势,所以,其研究的重点是在于如何提升有机光伏电池的光电转换率。有机光伏太阳能电池与传统的无机碳杨能电池的工作原理较为相近,二者都是以半导体界面的光能福特效应为基础进行发电工作。
在当前的太阳能电池中,传统的无机太阳能电池在理论及研究方面发展较为成熟,然而有机半导体光伏太阳能电池依然处在理论构思和研究过程当中。
一、有机光伏材料的介绍
有机光伏材料与无机材料的基本区别在于有机光伏材料中的光生激子之间具有强烈的束缚作用,一般都是紧密的束缚在一起,通常不会出现自动分离而形成单独的电荷;其电荷是通过跳跃的方式在规定区域内进行分子传输工作,并非带内传输,因而其迁移率较低;相对于太阳光光谱来说,对于光的波长吸收范围较为狭窄,但其吸收系数很高,100纳米的薄膜就可以收集到较强的光密度;有机材料一般在有水条件下与有氧条件下处于不稳定状态;对于其本身是一维半导体的情况来说,其本身的电能与光性都各自具有较高的各向区别,这种特性可以为器件的研究设计带来很大的利用价值。
分子链中能够通过部分离域的不同轨道来完成光能吸收和电荷传输等过程,同时分子链中还存在共轭体系是有机光伏材料器件的激活材料所必须具有的功能。有机光伏材料还可以按照相应的机械性能与加工性能分为可溶材料、不溶材料、为荣材料以及液晶材料。其中一般包括小分子、低聚物分子、高聚物分子、液晶分子等。能够吸收可见光线的低聚物或者单体物质,称之为发色团,在此基础上,根据其本身的可溶性分为染料和颜料,一般可溶性较强或具备一定溶解性的被称为染料,没有溶解性或具备较弱溶解性的称为颜料。在通常情况下,激活层材料所具备的溶解性能决定着有机光伏材料电池的制作工艺。在制作过程中,对于可溶性较强的染料以及可溶聚合物应采用溶液旋转涂抹的方法或刮涂成膜等方法,对于不溶或难溶的颜料分子主要采用真空积沉法成膜,晶体颜料分子则应使用物理蒸发成膜的方式来对其进行加工,本文重点概述有机光伏材料中的高分子材料与低分子材料。当今主要用于有机光伏器件研究的材料有噻吩(PTH)衍生物、聚对苯(PPP)衍生物、聚苯乙炔(PPV)衍生物、聚苯胺(PANI)等一系列高分子材料,这些聚合物基本具有较大的共轭系统,可以利用相应的掺杂或者化学分子修饰来使材料的导电性能得到调节。
由于液晶分子具备很高的电子荷载迁移率同时具有较长的激子扩散长度,因而在近几年的有机光伏材料太阳能电池研究中得到重视,液晶分子材料会在一定的温度范围内介于固态与液态之间,在这种状态之下,其分子更加便于重新排列或自行组合,同时还能够充分发挥自身的机械性能,所以晶体分子对光伏电池的研究与应用方面发挥了更加有利的作用。
二、有机光伏电池的基本工作原理
有机光伏电池的基本工作原理相近于无机太阳能电池原理,其基本原理如下:
1、有机光伏器件在经过一定的光照后,会将具有能量的光子吸收到半导体层内,从而激发电子从价带到导带之间的移动,同时在价带区域留出空隙,这种空隙通常被称为“空穴”,这样的空穴中带有正电荷。
2、传统半导体内的被激发电子和通过上述过程所形成的空穴之间会出现自由的反电极方向运动,同时在导电聚合物体中所受入的射光子激发而形成的电子与空穴之间会产生相互束缚作用,从而形成激子。
3、通常情况下,这些电子与空穴的形成都是有光子的激发作用来完成的,如若在电场之内或在电场的界面位置上,这些电子与空穴所形成的组合将会产生分离活动,形成单独的电子与空穴,这也就是人们所说的带电荷载流子,它们的互相迁移运动就形成了光能电流,如图1所示。
然而有机材料的机子奋力活动与移动现象并不是全都有效的,因此,为了时光能更加有效地向电能转变,务必要具备以下几个具体条件:首先,在有机光伏材料太阳能电池中的激活区域内的采光条件必须要好,光能吸收量一定要大;其次,在对光子进行吸收后所产生的自由何在电流子必须要有足够的数目,从而使内部电场的存在表现得更加清晰;最后,在其中所产生的荷载电流子要尽可能的降低自身损耗量来向外部电路进行电能输送工作,从而使光能与电能的转换率有所提高。
然而在效果上并没有达到预定要求,事实上的光能向电能转换过程中依然有大量损耗现象的存在,是有机光伏材料太阳能电池的实际使用效率变得很低。在光能向电能转换的过程中会受到不同因素的影响,从而大量损耗,在光吸收的过程中,光能的折射与反射作用会使光能有大量的损耗,从而影响了光电转换效率,在激子产生的过程当中,激子复合也会导致能量流失,另外在光转换过程中的激子扩散、电荷分离、电荷传输、电荷收集等各个环节中也存在不同的能量流失,直接导致了有机光伏材料太阳能电池使用率降低。
三、有机光伏材料的未来发展趋势与研究方向
通过人们近几年对有机光伏材料进行研究与开发,并对其技术不断深入创新后,在有机光伏材料太阳能电池的研究方面取得了相当丰硕的成果,并获得了开路高电压的发电方法,短路电流的发生几率以及填充因子影响率也比传统的无机太阳能电池低很多,较低光电流的形成原因是由于光能吸收率不够所造成的,除此之外,光电流较低的形成原因还由于电流在产生的过程中电阻对其本身的影响所造成的额外损耗,然而填充因子的形成是由于地点和在传输过程中出现的高复合影响所造成的。因此,应重点研究一下几个关键点:
1、提高光能吸收率,并相应的改善光能吸收环境。在此过程中一般采取具有红外光能吸收的聚合材料以及共轭结晶染料,同时还要改善设备的受光条件,要保证设备安置在阳光充足的地点,使其光能接受率有所提高。
2、充分利用高有序的液晶材料和具备较高流动性能的聚合材料,从而使光电流产生条件得到改善,从而有利于降低光电能的损耗量。
3、加强器件设备的优化性能与稳定性能,器件性能的提高无非是降低电能损耗量的有效途径之一。
4、加强对有机光伏材料性能的了解,同时了解相关器件的使用性能,只有掌握了有机光伏材料的性能才会使该材料能够更好地发挥其应有的作用。
与此同时,高效有机光伏材料器件还应该具备光诱导的电荷产生与分离或产生的电荷及时传输到电极等因素,并需要在同一种材料中同时完成这两个不同的过程,决定邮局光伏器件效率的基本因素在于怎样才能有效的完成这一过程。
多功能的有机光伏材料在未来发展中应通过分子设计朝着电光特性的可调节性、加工简单并能支撑较大面积的薄膜可控制度的方向发展,同时还要求有机光伏材料能够与其他材料进行良好的融合,并保证材料成本与技术成本较低。
在器件方面应采取以下措施来进行期间优化阶段:首先,要加强金属电极的优化,使其达到“欧姆接触”,从而能够更有效的收集光能,其次,在对D/A对匹配进行优化的同时还要加强对共轭聚合物带隙的调整,以便于更好的接收光能,最后,还要注重优化相分离复合材料的网络微结构,以便于其载流子的产生效率与传送效率的提高,与此同时还需要求点和载流子在复合体中的不同分组吸收与移动达到最大数值,经过上述对器件方面的优化措施,使有机光伏材料的光电转换率得到有效提升。
四、结束语
由于有机光伏材料在近几年内的研究与应用得到快速发展,并取得了良好的成果,经有关数据统计,目前有机光伏材料的光电转换率已经达到了新高,这一成果主要归功于该领域中广大的研究人员的不懈努力,相信通过不懈的努力会使有机光伏材料在未来的清洁能源发展中发挥更好的作用。
参考文献
[1]封伟,王晓工.有机光伏材料与器件研究的新进展[J].化学通报,2003(05).
[2]孙卫民,郭金川,孙秀全,周彬.缓冲层提高有基聚合物光伏电池性能研究[J].光子学报,2009(07).
[3]李真,蔡志岗,陈志强,等.偶氮苯聚合物薄膜光致微结构的研究[J].光子学报,2007
(36).
[4]段晓菲,王金亮,毛景,等.有机太阳能电池材料的研究进展[J].大学化学,2005.
[5]孟庆巨,刘海波,孟庆辉.半导体器件物理[M].北京:科学出版社,2005(21).
[6]徐明生,季振国,阕福麟,等.有机太阳能电池研究进展[J].材料科学工程,2000(18).
高分子材料的主要性能范文篇4
关键词:高分子阻尼材料;减振降噪;环保
一、高分子阻尼材料的工作机理
高分子阻尼材料的工作机理是在交变应力等作用到聚合物时,由于因链状大分子必须花费一定时间去克服链段间的内摩擦阻力才能继续运动,在应力变化过程中,变形往往会更为缓慢,特别是在某种频率或温度下这种滞后表现的更为明显。这种变形滞后必须消耗更多的能量所以减小了振动体动能,最终实现减震的效果。
现如今,阻尼材料已经有了更多的发展,新型阻尼材料的出现让高分子阻尼材料的工作机理变得更为复杂,因此用传统的方式来解释是远远不够的。当代的学者为了更好的解释高分子阻尼材料的工作机理,试图从粘弹性性能和微观分子结构的关系来进行剖析。学者Fradlin是最早定义阻尼性能和分子结构关系的,他认为互穿网络聚合物具有协同效应,它可以使两聚合物之间相互交联而限制相区,促使分子水平混合,从而具有宽广的阻尼峰。Thomas指出,聚合物中各个分子基团对阻尼的贡献不仅与其分子结构有关,而且还与在聚合物分子中所处的位置有关,进而定量地提出了基团贡献分子理论。相关学者的分析,加深了对高分子阻尼材料的研究,让新型高分子阻尼材料能够应用的更为广泛,也扩宽了高分子阻尼材料的研发领域和设计水平。
二、高分子阻尼材料的结构性能
传统的高分子阻尼材料具有一定局限性,结构上呆板和单一的特性约束了使用者的使用需求,其主要包括离散型、约束型和自由型阻尼结构。最近这些年以来,随着科学技术的不断发展,高分子阻尼材料已经取得了更多的研究进展,在设计上取得了瞩目的成就,其中最值得关注的便是复合型高分子阻尼材料。它主要是通过简单物理组合来实现各种单一阻尼材料的混合,并转换其中的性能和结构从而衍生出具有更多性能的高分子阻尼材料。
(一)具有隔离层的复合阻尼结构
具有隔离层的复合阻尼结构在阻尼层和基本弹性层之间添加了一层隔离层,这是它和自由阻尼结构最大的区别点。隔离层的主要材质是铝蜂窝、纸蜂窝、硬质泡沫塑料等,具有高刚度、轻质的性能特点。在弯曲振动力作用于基本弹性层时,这个隔离层将拉压变形的力度增大,从而阻尼层材料的能效随之增加,类似于杠杆放大的作用,所以也叫扩变层。具有隔离层的复合阻尼结构如图1所示。
图1具有隔离层的复合阻尼结构
(二)吸收低频振动的复合阻尼结构
吸收低频振动的复合阻尼结构和具有隔离层的复合阻尼结构结构存在一定相似之处,但是中间的聚氨酯泡沫不具备高刚度的物理特性,它呈现出的是柔软的特性。因此,吸收低频振动的复合阻尼结构往往在低频震动上具有更好的效果,如图2所示。
图2吸收低频振动的复合阻尼结构
为适应低频振动,增加了泡沫层,该泡沫层就相当于一根很软的弹簧,而普通阻尼层就相当于一个质量块,故其本身就构成质量弹簧减振系统,根据隔振理论,其有效隔振频率k的范围为k≥2P,式中P为质量弹簧系统的固有频率,可由下式求出:
式中m为上层普通阻尼材料的质量,k为泡沫层的刚度,只要泡沫层很软,就意味着P很小,有效隔振频率就更低。适当选择质量及弹簧,便可控制有效隔振频率范围。
(三)消声复合阻尼结构
消声复合阻尼结构的组成材料是对声音具有特定作用的,纤维型或是泡沫型阻尼材料内部有着空洞结构,在声波进入到这些空隙中时,孔壁和空气之间具备摩擦力,伴随空气间的粘性力,材料细纤维和空气产生振动,振动能随之降低,因此消声复合阻尼结构的消声效果较为明显。
(四)用于隔离地震的复合阻尼结构
用于隔离地震的复合阻尼结构,顾名思义是运用到地震灾害中去的阻尼材料。把建筑物同地震运动相隔离的主要条件,一是支承座既能确保建筑物和其地基在水平方向上柔性连接,又能在垂直方向上提供足够的支承刚度,二是支承座具有吸收振动能量的能力,图6即为其原理图。
图5用于隔离地震的复合阻尼结构原理图
三、应用及发展趋势
随着社会的不断发展,高分子阻尼材料也得以展开深入研究,并应用到越来越多的领域中去。现如今的高分子阻尼材料主要呈现如下发展趋势。
一是高分子阻尼材料的宽温域和高性能。高性能阻尼材料的要求主要为材料在宽温域内应具备高损耗因子(tanδ)。互穿聚合物网络(IPN)由于网络间的相互贯穿、强迫互容、协同效应及特殊的细胞状结构、双相连续等形态特征,可有效拓宽高聚物的玻璃化转变温度(Tg),这已成为目前制备此类材料颇具前景的方法。
二是高分子阻尼材料需要对环境的负面影响小。由于当前社会环境压力不断增大,因此对于任何新型材料都要求具备较好的环保性能,因此高分子阻尼材料也朝着无溶剂型材料、高固体分、水性材料方向发展,从而具备环境友好性。
三是高分子阻尼材料的精细化和智能化。随着科技的发展,高分子阻尼材料已经朝着智能方向不断发展,也表现出更多的应用前景。在未来的研究工作中,改进智能材料成为了重中之重,只有这样才能符合科学技术不断发展的需要。
四、结语
现如今,高分子阻尼材料已经在全世界各地广泛应用开来,也形成了一定的产业规模,德国汉高便是行业里的重要代表。在未来的发展过程中,高分子阻尼材料已经朝着宽温域、高性能、环境友好型、精细化和智能化的方向不断发展,也成为了各个生产S家研发的重要考虑因素,特别是在开发环保型材料,水性材料和无溶剂材料方面成为了该领域研究中的重中之重。相信只要加快材料的绿色化进程,高分子阻尼材料将会表现出更为重要的应用作用,逐步缩小我国同国外材料发展的距离。
参考文献
[1]符刚.高分子阻尼材料制备及约束阻尼结构的设计[D].浙江大学,2008.
[2]王奇观,钱鑫,王晓敏,郭浩,白阿敏,程晓雅,王恒朝,闫蒋磊,阴晨亮.共价联结石墨烯/导电高分子复合材料的制备及性能研究进展[J].合成材料老化与应用,2015,02:99-104.
[3]张乾,梁森,梁天锡.嵌入式共固化耐高温阻尼复合材料制备及老化前后力学性能[J].航空学报,2015,07:2468-2474.
[4]李华.高分子阻尼材料的结构设计[J].河北轻化工学院学报,1990,01:80-86.
高分子材料的主要性能范文
【关键字】生物降解;高分子;材料
随着经济的不断发展,人们生活水平的不断提高,大量的高分子材料在各个领域发挥重要作用,而废弃的高分子材料对环境的污染也日益严重。废弃塑料的处理方法主要分为掩埋和焚烧,这两种方法都会产生新的污染物污染环境。针对这一问题,许多国家实行了3R工程,3R指的是减少使用(Reduction)、重复使用(Reuse)、循环回收(Recycle)。但这只是减少了废弃塑料的使用,没有从根本上解决问题。如今,各种存在的处理废弃塑料的方法都会造成污染,因此研究与开发环境可接受的降解性高分子材料是解决环境污染的重要方法。
1生物可降解高分子材料的用途
生物可降解高分子材料也被称为“绿色生态高分子材料”,它在环境日益污染的今天发挥着重要的作用,主要分为以下几个部分。
1.1解决环境污染问题
利用生物可降解高分子的生物可降解性有效解决环境污染问题。据统计,目前世界的高分子材料的产量已经超过1.2亿吨,这些高分子材料在被使用后产生了大量废弃物,这些废弃物变成污染源,造成地下水与土壤的严重污染,进一步危害动植物的生长,对人类更是极其不利。20世纪90年代初期,在可以用来处理固体废物垃圾填埋的场地用完以后,一些发达国家开始向落后国家出口垃圾,这一行为对发展中国家的影响是巨大的。一系列环境危机引发了人类的觉醒,发展可降解的环境友好型的材料成了科学家们的主要研究的方向,生物可降解高分子材料的出现为人类解决了这一难题,它能在一定条件下,利用微生物分泌酶的作用进行分解,大大减少了对环境的污染。
1.2生物可降解高分子在医疗器材中的使用
利用生物可降解高分子的特性可以制作生物医用材料。使用可降解高分子制作成的药物可以在人体内分解,参与人体的新陈代谢。在生物可降解分子研究的初期,研究内容主要集中于部分降解的可崩溃型高分子材料的研究,但现在这一研究已经逐渐被否定。目前许多国家仍然在不断研究与发展生物可降解性的高分子材料,然而由于技术水平与成本的制约,生物可降解高分子的研究还没有达到令人满意的程度。
1.3生物可降解高分子材料在包装行业中的应用
众所周知,包装行业中使用高分子材料的情况非常多,大量的废弃包装材料对环境的污染程度是可想而知的。目前市面上各种包装材料主要以聚乳酸为首。聚乳酸具有良好的隔水性和透明性。作为基本材料的乳酸是人体可接受的固有物质之一,这使得聚乳酸对人体无毒无害,被广大消费者接受。而传统的包装材料由合成树脂构成,由于传统树脂的分解性不强,废弃的包装材料造成了40%的城市垃圾,成为最主要的环境污染源。
2生物可降解高分子的降解机理
生物降解指微生物的分解作用,在高分子领域指的是高分子材料在溶剂化,简单水解和酶反应等条件下,转化为相对简单的中间产物或小分子的过程。高分子材料的生物降解主要由水合作用,强度损失,物质整体化丧失和质量损失4个阶段组成。水合作用是指由范德华力氢键所维系的二次、三次结构的破裂而引发的水合作用。接下来在化学作用或酶的催化作用下,高分子主链可能破裂,造成高分子材料的强度降低。而高分子主链、交联剂、外悬基团的开裂会进一步造成交联高分子材料强度的降低,高分子链进一步断裂。高分子链的不断断裂造成质量损失和相对分子质量的降低,相对分子质量低到一定程度后就会被酶分解代谢称为水和二氧化碳等。由此可见,生物的降解过程并非是单一的化学反应,而是复杂的生物物理,生物化学的协同作用,是物理化学生物相互影响促进的过程。
3影响生物可降解高分子降解性的因素
3.1生物高分子的分子主链的影响
四大通用塑料聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯都具有C―C键为主键的结构,使得它们对微生物的阻抗性很高,而根据研究表明,当聚合物的主链上含有C-O,C-N键时,聚合物对生物降解的敏感性大大提高。因此,根据共聚原理,想要制备出生物降解塑料就必须要在聚合物中引入易于生物降解的化学键。
3.2支化与分子量对生物高分子降解的影响
国外研究表明,对分子量范围为170~620的线性与支链型碳氢聚合物的生物降解性进行分析比较,结果表明支链型聚合物的真菌生长速度与线性聚合物相比明显小得多,也就是说线性的碳氢聚合物更易于降解。同时分子量的大小对高分子材料的影响也是巨大的,例如PS、PE、聚丁二烯和聚异丁烯只有在分子量小于特定值后才能够被菌种所分解。
3.3降解环境对生物高分子降解的影响
虽然材料结构是决定生物大分子降解的主要因素,但是环境对生物大分子材料的降解也有一定的影响作用。降解环境主要指降解过程中的水,温度,酸碱度和氧浓度等。水是微生物生长与代谢的基本条件,只有水的供应量足够,微生物才可以进行分解材料。而温度对微生物也有影响,每一种微生物都有适合其生长的最佳温度与酸碱度,一般来说真菌生长在酸性条件下,而细菌在碱性条件下的生长更加迅速,想要提高降解效率,就必须要保证微生物的正常生长,为微生物提供合适的温度,酸碱度等生长环境。
4生物可降解高分子的前景展望
由于我国生物高分子技术的研究并不成熟,国内的生物可降解高分子的开发与应用还存在一些问题。比如:产品价格过高,产品的性能和用途受到限制,产品生产技术不够成熟等。尽管高分子市场存在许多不足,随着人们环保意识的增强和我国环保法规的不断完善,生物可降解高分子的市场仍在迅速增长。塑料薄膜、包装材料、医用材料等领域生物可降解高分子材料的研究将会得到更好的发展。目前针对如何解决市场出现的问题,研究者正在不断努力,降低开发生产成本,对现有的可降解高分子进行性能改进,以获取更高质量的高分子材料。研究开发低成本,高性能,具有降解时控性,高效性和彻底性的生物高分子材料成为高分子领域的主要研究方向。
【参考文献】
[1]王身国.生物降解高分子――一类重要的生物材料1.脂肪族聚酯的本体改性[J].高分子通报,2011,(10):1-14.
高分子材料的主要性能范文篇6
关键词:可瓷化高分子复合防火材料;硅橡胶;硅酸盐矿物
中图分类号:TB33文献标识码:A文章编号:1671-2064(2017)04-0180-01
当前我们所使用的电线电缆多以氧化镁矿物绝缘防火电缆及云母带绕包的耐火电缆为主,但这二种电缆都存在着成本较高的问题,而且遇水导电,无法起到有效的防火作用,在火灾发生过程中也无法有效的保证通电安全。这就使许多人专家学者开始深入的研究更为适宜的绝缘耐火材料。可瓷化高分子复合防火材料是一种较为优异的电线电缆材料,在高温着火后,经过瓷化的表面会转变为坚硬的陶瓷防护层,能够有效的抵御明火的烧蚀,而且具有较好的机械强度,即使水浇在上面也会不发生破裂,而且这种新型防火材料已在电线电缆中进行应用,并取得了较好的应用效果。
1可瓷化高分子复合防火材料的特性及防火机理
可瓷化高分子复合防火材料主要是在含硅高分子基体中将粘土类矿物粉末填料加入其中,同时还会加入结构控制剂和其他助剂。这其中含硅高分子主要以含有元素硅的有机聚合物为主,如硅橡胶。在有机硅高分子结构中,不仅含有有机基团,同时还含有无机结构,其将有机物与无机物集于一身,因此有机硅具有非常好的热稳定性,能够在高温领域中进行广泛应用。同时含硅高分子在常温下具有无毒无味的特点,能够耐高温、耐严寒、耐臭氧、难燃、憎水,即使在燃烧状态下含硅高分子材料也不会产生有毒气体,将其用于电线电缆绝缘材料及绕包材料十分适宜,具有安全、可靠的特性。
当前普通的电线电缆绝缘层材料多以易燃的高分子材料为主,一旦发生火灾,电线电缆绝缘层在火焰烧蚀后会产生熔融滴落,从而使铜导线在外,发生短路。但可瓷化高分子复合防火材料中是以有机硅作为基体,以粘土类矿物为填料,在高温和火焰烧蚀下呈现出较强的抗高温氧化性能,而且粘土矿物与有机硅分子结合后会在烧蚀过程中会形成较硬的陶瓷状块体,具有较强的耐高温性能,而且在火灾现场高温水浇过程中也不会发生破裂,能够对铜导线进行有效的保护。
在高温烧蚀下,可瓷化高分子复合防火材料能够与粘土粉末填料分解产物发生反应,形成部分液相和新的同相。而且在烧蚀温度不断升高及烧蚀时间延长的情况下,液相会向陶瓷网络结构中进行渗入,待冷却同化后,能够进一步强化陶瓷结构。而且在烧蚀后残留的陶瓷保护层还能够对物质对流起到阻碍作用,并防止热量的有效传输,对材料内部物质的挥发损耗具有较好的抑制作用,能够对外界热量向材料内部扩散产生有效的阻隔,从而具备非常好的防火性能。
2可瓷化高分子复合防火材料的研究进展
2.1有机硅基体
可瓷化高分子复合防火材料的基体采用的是含硅的高分子材料,即有机硅。将有机硅转换为陶瓷的技术已较成熟,为可瓷化高分子复合防火材料的制备提供了实验依据。有机硅分为硅油、硅树脂和硅橡胶3大类。硅油在室温下为液体,没有足够的强度,起到联结无机填料的作用,适合作基体材料。硅树脂是具有高度交联网状结构的聚有机硅氧烷,虽然它具有优异的热氧化稳定性,但却是一种热固性的塑料,成型后不具有柔韧性,不可随意弯折,不是制造电缆的理想材料。因此作为可瓷化高分子复合防火电缆材料的基体,应用得最为广泛的是硅橡胶。硅橡胶是唯一一类主链上不含碳原子的大分子弹性体,具有其他橡胶所不具备的独特性能,具有优良的耐高温与耐寒性,良好的耐老化性、电气绝缘性和化学稳定性,突出的表面活性和生理惰性等。同时硅橡胶还具有燃烧时少烟无毒、燃烧热值低、火焰传播速度慢等特点。
以硅橡胶为基体的各种材料具有优良的阻燃防火性能。因此以硅橡胶作为可瓷化高分子复合防火材料的基体是行之有效的。其他类型的高分子材料通过与阻燃剂复合虽然也可制备出阻燃性能相当优良的阻燃材料,但是这类材料在明火的烧蚀下容易分解挥发,不能保持原有形状,难以起到真正的防火作用。
2.2粘上矿物粉末填料
由于粘土矿物中主要以含水硅酸盐矿物为主,其具有较高的耐火度,在耐火材料制备中应用十分广泛。在可瓷论高分子复合防火材料中,以粘土矿物粉末作为填料,充当硅橡胶补强剂的作用,而且在阻燃方面也优于其他无机填料。当前层状硅酸盐矿物种类较多,将其粉末作为可瓷化高分子复合防火材料的填料,使其c低溶点的氧化物有效的进行配合使用,从而保持复合材料的高温性能,并获得较好好的中温性能,即使在低温下也能够形成坚硬的陶瓷保护层,使材料使用过程中温度范围得以扩大。
3结语
可瓷化高分子复合材料是当前一种较为新型的防火材料,不仅制备工艺简单,而且原料丰富,而且在不断研究过程中,可瓷化高分子复合防火材料的性能进一步提升。随着研究的不断深入,可瓷化高分子复合防火材料必将实现低成本工业化生产,从而使其应用更为普及,这对消防防火安全具有非常积极的意义。
参考文献
[1]王锦贵,王希光,郭祥旭.浅谈几种常用的防火材料[J].技术与市场,2010-05-15.
高分子材料的主要性能范文1篇7
关键词:高分子材料可降解生物
我国目前的高分子材料生产和使用已跃居世界前列,每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可降解,以尽量减少对人类及环境的污染。生物可降解材料,是指在自然界微生物,如细菌、霉菌及藻类作用下,可完全降解为低分子的材料。这类材料储存方便,只要保持干燥,不需避光,应用范围广,可用于地膜、包装袋、医药等领域。生物可降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。按照上述机理,现将目前研究的几种主要的可生物可降解的高分子材料介绍如下。
一、生物可降解高分子材料概念及降解机理
生物可降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。
生物可降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。一般认为,高分子材料的生物可降解是经过两个过程进行的。首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物;然后,降解的生成物被微生物摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。
因此,生物可降解并非单一机理,而是一个复杂的生物物理、生物化学协同作用,相互促进的物理化学过程。到目前为止,有关生物可降解的机理尚未完全阐述清楚。除了生物可降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。生物可降解高分子材料的降解除与材料本身性能有关外,还与材料温度、酶、PH值、微生物等外部环境有关。
二、生物可降解高分子材料的类型
按来源,生物可降解高分子材料可分为天然高分子和人工合成高分子两大类。按用途分类,有医用和非医用生物可降解高分子材料两大类。按合成方法可分为如下几种类型。
2.1微生物生产型
通过微生物合成的高分子物质。这类高分子主要有微生物聚酯和微生物多糖,具有生物可降解性,可用于制造不污染环境的生物可降解塑料。如英国ICI公司生产的“Biopol”产品。
2.2合成高分子型
脂肪族聚酯具有较好的生物可降解性。但其熔点低,强度及耐热性差,无法应用。芳香族聚酯(PET)和聚酰胺的熔点较高,强度好,是应用价值很高的工程塑料,但没有生物可降解性。将脂肪族和芳香族聚酯(或聚酰胺)制成一定结构的共聚物,这种共聚物具有良好的性能,又有一定的生物可降解性。
2.3天然高分子型
自然界中存在的纤维素、甲壳素和木质素等均属可降解天然高分子,这些高分子可被微生物完全降解,但因纤维素等存在物理性能上的不足,由其单独制成的薄膜的耐水性、强度均达不到要求,因此,它大多与其它高分子,如由甲壳质制得的脱乙酰基多糖等共混制得。
2.4掺合型
在没有生物可降解的高分子材料中,掺混一定量的生物可降解的高分子化合物,使所得产品具有相当程度的生物可降解性,这就制成了掺合型生物可降解高分子材料,但这种材料不能完全生物可降解。
三、生物可降解高分子材料的开发
3.1生物可降解高分子材料开发的传统方法
传统开发生物可降解高分子材料的方法包括天然高分子的改造法、化学合成法和微生物发酵法等。
3.1.1天然高分子的改造法
通过化学修饰和共混等方法,对自然界中存在大量的多糖类高分子,如淀粉、纤维素、甲壳素等能被生物可降解的天然高分子进行改性,可以合成生物可降解高分子材料。此法虽然原料充足,但一般不易成型加工,而且产量小,限制了它们的应用。
3.1.2化学合成法
模拟天然高分子的化学结构,从简单的小分子出发制备分子链上含有酯基、酰胺基、肽基的聚合物,这些高分子化合物结构单元中含有易被生物可降解的化学结构或是在高分子链中嵌入易生物可降解的链段。化学合成法反应条件苛刻,副产品多,工艺复杂,成本较高。
3.1.3微生物发酵法
许多生物能以某些有机物为碳源,通过代谢分泌出聚酯或聚糖类高分子。但利用微生物发酵法合成产物的分离有一定困难,且仍有一些副产品。
3.2生物可降解高分子材料开发的新方法——酶促合成
用酶促法合成生物可降解高分子材料,得益于非水酶学的发展,酶在有机介质中表现出了与其在水溶液中不同的性质,并拥有了催化一些特殊反应的能力,从而显示出了许多水相中所没有的特点。
3.3酶促合成法与化学合成法结合使用
酶促合成法具有高的位置及立体选择性,而化学聚合则能有效的提高聚合物的分子量,因此,为了提高聚合效率,许多研究者已开始用酶促法与化学法联合使用来合成生物可降解高分子材料
四、生物可降解高分子材料的应用
目前生物可降解高分子材料主要有两方面的用途:(1)利用其生物可降解性,解决环境污染问题,以保证人类生存环境的可持续发展。通常,对高聚物材料的处理主要有填埋、焚烧和再回收利用等3种方法,但这几种方法都有其弊端。(2)利用其可降解性,用作生物医用材料。目前,我国一年约生产3000多亿片片剂与控释胶囊剂,其中70%以上是上了包衣的表皮,其中包衣片中有80%以上是传统的糖衣片,而国际上发达国家80%以上使用水溶性高分子材料作薄膜衣片,因此,我国的片剂制造水平与国际先进水平有很大的差距。国外片剂和薄膜衣片多采用羟丙基甲纤维素,羟丙纤维素、丙烯酸树脂、聚乙烯吡咯烷酮、醋酸纤维素、邻苯二甲酸醋酸纤维素、羟甲基纤维素钠、微晶纤维素、羟甲基淀粉钠等。
参考文献:
高分子材料的主要性能范文篇8
在《材料化学》绪论课的教学过程中,采用启发引导教学方式,以材料、材料与化学、材料化学”为主线进行教学设计,通过讲解材料发展中的化学,引入材料科学与化学的区别与联系,重点从材料结构、制备、性能和应用四个方面讲授了材料研究中的化学问题,使学生对本课程的内容有了清晰的认识,激发了学生学习本课程的信心和兴趣,并取得了满意的教学效果。
关键词:
材料化学;绪论课;教学设计
材料化学是材料科学与化学的交叉学科,伴随着材料科学的发展而诞生和成长,即是材料科学的重要部分,又是化学学科的一个分支[1]。目前,很多高等学校的化学和材料类专业开设了《材料化学》这门课程。《材料化学》是南阳师范学院材料化学专业的核心基础课程,对于培养学生的材料科学基础知识,分析和解决材料制备和应用中的化学问题的能力起到了关键作用。但是该课程涉及的知识面广泛,内容庞杂、概念甚多、加上课程改革,理论课时数减小,学生在学习《材料化学》课程过程中,普遍存在概念混淆、重点难以掌握等问题。绪论是一门课程的开场白和宣言书,是师生之间学习和交流的起始点,能为学生建立起一门课程的知识轮廓。通过对绪论进行学习,学生可以了解课程在所学专业中所处的地位和作用,以及该课程的教学内容、学习方法和考核方式等问题[2]。如何激发学生学习该课程的兴趣,提高课程的教学质量,绪论课在整个课程教学中有着举足轻重的地位。结合近年来的教学实践,就如何讲好《材料化学》绪论课谈一些心得。
1首先明确课程性质、特点及地位
教学之初,首先明确该课程作为专业核心课程的重要地位,是学习后面材料专业课程的基础课程,同时明确考核方式,加强学生对本课程的重视程度。材料化学是材料科学和化学学科的交叉学科,课程内容既涉及工程材料应用中的实际问题,又包括材料结构及制备中的化学问题。作为一门交叉学科,很多知识点与材料学和化学课程中的相关内容重复,很多学生以为学过相关知识,就会从思想上松懈。然而,相关知识点虽然出现重复,但在不同学科中讲授的重点是不同的。在讲授材料化学课程的过程中,要着重培养学生利用化学的思维解决材料科学中的问题,使学生深刻领会化学与材料科学交叉的重要意义。通过一些实例,讲解本课程与化学和材料相关课程的区别和联系,使学生更加深入了本课程的性质和地位。材料科学是偏实际应用的工科课程,化学是偏理论的理科课程,材料化学则是利用化学的理论解决材料应用中的实际问题。
2材料
以材料的实际应用为引子,如材料在航天航空、交通运输、电子信息、生物医药等领域的应用,带领学生进入学习状态,引导学生回想什么是材料?材料的种类?提出材料是对人类有用的物质,是人类赖以生存和发展,征服自然和改造自然的物质基础;是人类进步的里程碑。然后介绍材料的发展历史,说明人们对材料的使用,是从最早的天然材料,依次经历了陶瓷、青铜、铁、钢、有色金属、高分子材料以及新型功能材料。根据材料的发展史,启发学生思考材料研究和发展过程中的规律和特点。人们对材料的使用经历了从天然材料到合成材料,从传统材料到新兴材料。传统的材料主要以经验,技艺为基础,材料靠配方筛选和性能测试,通过宏观现象建立的唯象理论对材料宏观性能定性解释,不能预示性能和指明新材料开发方向,而新型材料则以基础理论为指导。材料科学的历史表明,当一种全新的材料在原子或分子水平上合成后真正巨大的进展就常常随之而来。化学的发展往往导致材料技术的实质性进步。在新材料的研发和材料工艺的发展中,化学一直担当着关键的角色[3]。任何新材料的获得都离不开化学,以石墨烯为例,物理学家主要关注其电子结构及输运理论,材料学家主要测试材料的电磁、光电、传感和催化等性能,而化学家的任务则是利用化学气相沉积和插层剥离等方法制备该材料。只有通过化学气相沉积法制备出高质量大尺寸的石墨烯,才能推动石墨烯在电子信息领域走向实用化。
3材料与化学
材料化学是材料科学与化学学科的交叉,很多学生容易混淆材料科学和化学的研究范畴。在本课程的第一节课,一项重要的任务是使学生明确材料科学和化学的研究内容和范畴,这对于后续相关概念的讲解至关重要。材料科学的研究对象是材料,材料是对人类有用的物质,指的是人类用于制造物品、器件、构件、机器或其他产品的那些物质。而化学的研究对象是物质,物质是构成人类物质世界的基础。材料是物质,但不是所有物质都可以称为材料;材料科学是一门研究材料的成分、组织结构、制备工艺与材料性能及应用之间相互关系的科学;而化学则是从原子和分子角度研究物质的组成,结构、性质及相互转变规律的科学。因此,化学研究的尺度范围是原子、分子、分子纳米聚集体。材料科学最早研究的尺度范围在微米以上,如钢和陶瓷的组织结构。随着一些新兴材料的出现和发展,人们对材料的研究甚至小到电子结构。如近些年发现的拓扑绝缘体,其表面导电,体内不导电的性质由其拓扑的能带结构决定,而该拓扑结构则与电子的自旋运动有关,研究拓扑绝缘体必须从电子自旋角度认识其结构。因此,材料科学的研究范畴不断拓展,并于其它学科交叉。
4材料化学
通过学习材料的发展历程、材料科学与化学之间的区别和联系,学生已经对材料化学有了一定的认识,引导学生给材料化学下一个定义。材料化学是关于材料结构、制备、性能和应用的化学。本校材料化学专业选用曾兆华、杨建文编著第二版《材料化学》作为教材,教材的章节也是按照材料结构、制备、性能和应用进行安排的[4]。在这部分内容讲授过程中,可以让学生以教材目录为参照,讲到相关内容可以与教材相关章节进行对应。
4.1材料的结构
从三个层次讲解材料的结构,分别是电子原子结构、晶体学结构和组织结构。电子原子结构在很大程度上影响材料的电、磁、热和光的行为,并可能影响到原子键合的方式,因而决定材料的类型。在这个层次上研究的化学问题主要涉及原子序数、相对原子量、电离势、电子亲核势、电负性、原子及离子半径等。原子序数决定了材料的化学组成,电负性决定材料内部原子之间的键合方式,从而影响材料的导电性、强度和热膨胀系数等。晶体学结构主要指原子或分子在空间排列的方式,根据原子排列的有序性,将材料分为晶体和非晶体。晶体中出现局部无序,或对理想晶体的产生偏离,则出现缺陷。缺陷的存在影响材料的力学性能和电学性能等。如在本征硅内部掺杂磷元素,磷原子替代硅原子的位置,形成杂质原子缺陷,增加本征硅的导电性,形成N型半导体。组织结构主要指材料的物相组成及结构、晶粒的大小和取向等。在大多数金属、某些陶瓷以及个别聚合物材料内部,晶粒之间原子排列的变化,可以改变它们之间的取向,从而影响材料的性能。一般来说,减小金属的晶粒可以降低其熔点。在这一结构层次上,颗粒的大小和形状起着关键作用。大多数材料是多相组成的,控制材料内部物相的类型、大小、分布和数量可以调控材料的性能。
4.2材料制备
材料合成与制备就是将原子、分子聚集在一起,并转变为有用产品的一系列过程。材料制备的方法和工艺影响材料的结构,从而影响材料的性能。根据制备原理的不同,材料制备方法可以分为物理法和化学法。物理法指在材料制备过程中,仅改变材料内部原子或分子的聚集状态,不涉及化学反应的方法。如真空镀膜、溅射镀膜、脉冲激光沉积法等。化学法则在材料制备过程中,涉及化学反应,并且有新物质的生成。如固相反应法、有机合成法、水热法、沉淀法、化学气相沉积法等。以石墨烯材料为例讲解材料的制备方法。石墨烯作为二维单原子层材料,既可以采用物理法制备,也可以采用化学法制备。2004年发现石墨烯的报道,便是采用简单的胶带对撕方法制备,该方法依靠外力使石墨片层克服层间范德华力,使层与层之间分离,从而获得单层石墨,该方法也称为物理机械剥离法。利用甲烷、乙烯等烃类气体作为碳源,镍、铜、金等金属作为基片,采用化学气相沉积法则可以制备高质量大尺寸的石墨烯。另外,以石墨为原料,利用化学插层剥离的方法也可以用来制备石墨烯[5]。但不同方法制备获得石墨烯的尺寸及性能差别较大,在不同的应用领域采用的石墨烯制备方法是不同的。
4.3材料性能
材料的性能由其结构决定,与材料制备的工艺和方法有关。性能是指材料固有的物理、化学特性,材料性能决定了其应用。广义地说,性能是材料在一定的条件下对外部作用的反应的定量表述,例如力学性能是材料对外力的响应、电学性能是对电场的响应、光学性能是对光的响应等。因此,材料的性能可分为力学性能和特殊的物理性能。常见的力学性能包括材料的强度、硬度、塑性、韧性等。力学性能决定着材料工作的好坏,同时也决定着是否易于将材料加工成使用的形状。锻造成型的部件必须能够经受快速加载而不破坏,并且还要有足够的延性才能加工变形成适用的形状。微小的结构变化往往对材料的力学性能产生很大的影响。材料特殊的物理性能包括电、磁、光、热等行为。物理性能由材料的结构和制造工艺决定。对于许多半导体金属和陶瓷材料来说,即使成分稍有变化,也会引起导电性很大变化。过高的加热温度有可能显著地降低耐火砖的绝热特性。少量的杂质会改变玻璃或聚合物的颜色。
4.4材料应用
材料化学已经渗透到现代科学技术的众多领域,如电子信息、环境能源、生物医药和航天航空等领域。例如,在电子信息领域,现代芯片制造离不开化学。光刻过程使用的光刻胶和显影液,镀膜过程中的化学气相沉积和原子层沉积,刻蚀过程中的反应离子刻蚀,这些工艺过程都离不开化学的作用。在环境能源领域,新型光催化材料和太阳能电池材料的研究和开发,离不开化学法制备材料和对材料进行化学掺杂改性。在生物医药领域,对传感材料进行化学改性提高其传感特性,对仿生材料进行表面改性可以提高其生物相容性。在航天航空领域,各种轻质、耐高温、耐摩擦等结构材料和功能化智能材料的研发都离不开化学。
5结语
通过对材料化学”绪论课的精心设计,使学生明确了该课程的性质和重要地位,大量的实例激发了学生学习的兴趣和求知欲,树立了学生学好该课程的信心,为课程的深入学习起到了奠基石的作用。以材料、材料与化学、材料化学”为主线进行讲授,使学生对本课程的内容有了更加清晰和深入的认识,取得了良好的教学效果。
参考文献
[1]禹筱元,罗颖,董先明.材料化学专业人才培养模式的改革与实践[J].高教论坛,2010,1(1):23-25.
[2]杨卓娟,杨晓东.关于高校课程绪论教学的思考[J].中国大学教学,2011(12):39-41.
[3]唐小真,杨宏秀,丁马太.材料化学导论[M].北京:高等教育出版社,1997.
[4]曾兆华,杨建文.材料化学.2版[M].北京:化学工业出版社,2013.
高分子材料的主要性能范文1篇9
关键词:高分子新型技术化学
中图分类号:O63文献标识码:A文章编号:1672-3791(2012)08(a)-0102-01
从19世纪中期开始到现在,经过了这么长时间的不断发展,高分子体系已经从高分子改性逐渐向高分子合成、构筑、光电功能高分子等方向转变。人们的生活也从高分子化学中受益匪浅,小到日常可见的材料、油漆以及涂料等,大到在科研研究方面使用的高分子聚合物、分离膜、酶、树脂等。现在对高分子化学的研究方向已经转向了新功能材料,在目前快速发展的情况下看,高分子化学会和其它学科相互之间相继结合穿插,一定会在纳米材料、智能等一系列研究领域中广泛使用,适应现代化可持续发展的目标,使所有研究项目都向绿色科学方向发展。
1现如今高分子化学的发展情况
自从20世纪到现在,随着工业技术的快速发展,天然资源已经露出了疲态,科学家们已经开始使用高分子化学进行材料的合成。有数字表明,在之前的40年中,使用材料的速度正在以每10年五倍增长,人类三大合成材料,其中包括塑料、橡胶、纤维,在使用过程中表现出了令人惊讶的增长速度。新型的材料,特别表现在合成材料,在工业、建筑、农业、电子技术方面都被广泛使用,极大的支撑着人类的日常生活,是使国民经济持续发展的必要动力源泉。
2高分子化学不同领域的使用分析
使用高分子化学的研究都处于高端技术领域,它的发展方向一定会和社会发展的方向和各种行业发展要求相适应。以后的高分子化学一定会其它领域相互融合,高分子材料的使用注定会减少人类对自然资源的依赖程度,逐渐向纳米、绿色和智能等方向转变,在实现可持续发展的目标中占据了非常重要的位置。
2.1使地球更加绿色化
在现在很多工业发达的城市,天空中都会飘着非常浓郁的黑烟,对人们的日常生活有非常严重的污染。绿色,在现在被认为是没有污染、再生性或者可以循环使用。在没有污染方面,我们需要做的就是减少工业废弃物的排放、相对的减少污染源。现在的情况表明,化学行业中具有污染和治理两个方面的性质,可以对绿色使用材料进行研究,也可以继续对环境造成恶化。例如:在研制的过程中使用的催化剂、溶解剂、中间物品等,在生产过程中产生的废气、废渣、废弃液体等都是对环境造成影响的主要元凶,若长期的进行排放,会对环境造成严重的影响,甚至会导致不可逆转的事情发生。
2.2减少的自然资源的使用依赖
目前研究的高分子合成材料对石油具有很强的依赖性,众所周知,石油是经过地球非常漫长孕育才出现的,另外,石油也是现如今人类社会非常重要的能源,石油资源现在正在快速的减少,而且不能快速的进行补充,所以人们现在非常急切的找到可以代替石油使用的资源,这已经成为现在高分子化学研究中非常重要的课题。在对物质中原子和分子的比率进行调节,对物质的微观特性、宏观特性以及表面性质进行加强控制,也许这种物质就会满足一些行业的使用要求,当这种情况出现的时候就可以把这种物质作为材料使用。所以,在对材料进行配置的时候就会减少对不可再生资源的依赖程度,并对使用材料和环境进行相互协调,这是现如今化学研究当中非常重要的领域。现在很多高分子合成材料都非常依赖石油资源。想要解决目前的情况,可以对天然高分子进行利用,这其中也应该包含对无机高分子的不断探索和研究。
现在由石油合成的高分子材料,主要因为原子中以碳为主要元素,其中还含有少量的氮、氧等原子,所以被称为有机高分子。无机高分子是因为主链上的组成原子中不含碳。根据元素的性质进行判断,大约有40~50种元素可以成为长链分子。现在引起科学家高度重视的一种无机高分子,它的主链上都是硅原子,并且含有有机侧链的聚硅烷。
2.3使高分子材料不断纳米化
现在很多高分子化学反应中的原子经过重新排列组合之后的反应空间要比原子的大小大出很多,所以,化学反应的研究要在一个受限空间之中进行。若在有限的空间中,像纳米量级的片层当中,小型分子由于和片层分子相互作用而且还在一个比较受限的空间内进行排列,之后产生单体聚合,聚合之后的产物的拓扑结构不会再受限的空间内进行全部的复制,这种情况和自由空间的结果完全不同。我们也许会在受限制空间内进行聚合反应的分子中提炼出高分子纳米化学的定义。化学的研究对象基本都是纳米量级的分子和原子,但是因为没有精细的方式,没有达到可以在纳米尺度上精确控制分子或者原子的程度,所以现如今很难做到对分子的精准设计,使化学的合成让人感觉非常的粗放。高分子化学在纳米程度上精要精确的按照分子设计,在此基础上确定分子链中的原子配比位置以及相互结合的方式,通过纳米技术对分子、原子和分子链进行非常精确的控制,达到对高分子各级结构的位置确定。这样就可以精确的控制新合成材料的功能和特性。
2.4面向智能材料的高分子化学研究路线
20世纪的人类社会是以合成材料为标志的,在21世纪人类社会的标志将会是智能材料。高分子化学仍然是进入智能材料时期非常重要的组成部分。材料自身具有的功能可以根据外部条件的变化,有意识的进行调节和修复等一系列措施,这就是智能材料的基本定义。现在科学家已经了解高分子有软物质这一特征,简单说就是可以对外场具有反应。
3结语
随着社会的不断发展,人类把能源、信息以及材料称为支撑科技革命的重要力量,而且材料也是能源以及信息不断发展的基础所在。从出现合成有机高分子材料开始,人类就在不断的进行研究和探索,希望可以找到使用广泛的新型材料,可以广泛的使用在计算机、生物、海洋等一系列领域当中。高分子材料正在向高性能、多功能方向不断前进,正在不断适应快速发展的今天,出现了很多功能非常强健并且广泛使用的高分子材料。
参考文献
[1]王立艳.《高分子化学》理论与实践教学的整体优化研究[J].广州化工,2012,40(4):108-109.
[2]张宏刚.新型高分子化学注浆材料在碱沟煤矿的应用[J].中国高新技术企业,2011(34):63-64.
高分子材料的主要性能范文
关键词:建筑;防水工程;新材料;选择;应用
目前新型防水材料主要可以分为五大类别:高聚物改性沥青类防水卷材;合成高分子防水卷材;防水涂料;密封材料;刚性防水材料。各种防水材料分别具有不同的性能特点,将其用于它所适宜的防水部位,可有效的解决工程防水问题。
1.高聚物改性沥青类防水卷材;
传统的纸胎石油沥青类防水卷材是由原纸作为胎体以石油沥青作涂盖层构成的厚度约1mm左右的卷材,这种因以石油沥青为涂盖物而造成低温易脆裂、耐高温能力差的卷材,因以纸为胎基而造成强度较低、无延伸率、吸油率低而胎基易腐烂、厚度过薄而只能采用多层热油施工作业,不但施工手段落后,生产效率低,劳动强度大,而且还污染环境,由纸胎石油沥青防水卷材的综合性能更决定了它的使用寿命一般只能有2~5年左右,因此使防水工程经常处于反复翻修状态。
选择、应用高聚物改性沥青防水卷材应注意下述方面:采用热熔施工的方法施工的高聚物改性沥青防水卷材的厚度必须达到4mm、3mm,3mm厚以下的卷材和自粘型橡胶沥青卷材一般采用冷粘法施工;表面覆PE膜的高聚物改性沥青防水卷材在以冷粘法进行搭接缝处理时,应消除PE膜对冷粘剂的隔离作用;在地下室等长期泡水的环境中应用的高聚物改性沥青防水卷材不易使用以含棉、麻等易腐烂的植物纤维为胎体的卷材。
2.合成高分子防水卷材品种和特点
合成高分子防水卷材具有传统的纸基石油沥青油毡无可比拟的高强度和高延伸率,很好的高低温性能,有的合成高分子防水卷材还具有很好的弹性,很好的耐久性,几乎所有的合成高分子防水卷材都有很轻的质量,并可采用单层冷粘工法施工,改善了施工环境,因此合成高分子防水卷材具有较强的生命力。
合成高分子卷材的品种繁多,目前在国内最有影响的品种为三元乙丙橡胶防水卷材,氯化聚乙烯――橡胶共混防水卷材,聚氯乙烯卷材,氯化聚乙烯防水卷材,聚乙烯防水卷材等。防水卷材按原材料的区别可分为两大类,合成橡胶类防水卷材、合成树指类防水卷材,根据防水卷材的应用特点,防水卷材又被分别设计为纤维增强型和非增强型等品种。(1)合成橡胶类防水卷材:是以合成橡胶或以热塑性弹性体改性合成橡胶形成的高分子合金为主体材料,并配以适量的硫化剂、硫化促进剂、防老剂以及增塑剂、补强剂及其他加工助剂等多种材料经塑炼、密炼、混炼、压延或挤出成型,经过硫化等工艺,加工而成的硫化型或不经硫化工艺的非硫化型合成橡胶防水卷材。(2)合成树脂类防水卷材:是以合成树脂或以合成橡胶改性合成树脂形成的高分子合金为主体材料,并配以适量的增塑剂、稳定剂、剂、填料及其他加工助剂等多种材料经捏合、密炼、挤出成型或吹塑成型而成的热塑型的防水卷材。
3.防水涂料
建筑防水涂料是建筑防水工程中应用范围最广泛的另一大类重要的防水材料,防水涂料在应用前是可流动或粘稠的液体,经现场涂刷后固化形成防水层。防水涂料具有防水卷材所不具有的一些特点,如:防水性能好,固化后可形成无接缝的防水层;操作方便,可适应各种形状复杂的防水基面;与基层粘结强度高;有良好的温度适应性;施工速度快,易于维修等。
防水涂料的品种较多,按成膜物的成分分类,、可以分为合成高分子涂料和改性沥青类涂料。合成高分子涂料中包括聚氨酯系列涂料、丙烯酸酯类系列涂料,硅橡胶系防水涂料以及合成橡胶系防水涂料按涂料的溶剂类型分类。又可分为水乳型涂料和溶剂型涂料、聚合物水泥基复合涂料等。这些涂料各具特色的性能,决定了防水涂料有非常宽阔的应用范围,最适于使用防水涂料解决的防水工程是:构造复杂,穿墙管道多,防水要求高面积狭小的工程。采用涂料防水的厨房、厕浴间,可将各卫生洁具、穿墙管道与基层结合部位,包封严密、形成无接缝的整体防水层,达到很好防水效果。防水涂料还可应用于地下防水工程,以及屋面防水工程中的一道防线,墙面防水、屋面防水层的保护层、卷材防水的辅助材料,以及防水工程的维修材料。
4.建筑密封材料
随着建筑形式的多样化,及新型墙体材料的大量应用,建筑密封材料在防水密封工程中的作用越来越重要。建筑密封材料按产品形式分类,可分为三大类:定型密封材料;半定型密封材料;无定形密封材料。在建筑防水工程中应用最多的是各种建筑密封膏,近几年来,密封膏的应用范围还在不断扩大。
建筑密封膏类非定型密封材料有很好的粘结力,并能长期保持不出现剥离现象;有随动性,能承受一定的接缝位移;具有一定的内聚力,自身不会破坏。耐疲劳性能好,反复变形仍能充分恢复原有性能和状态。有很好的高低温性能,高温不下垂和流淌,低温下不会脆裂,还有良好的施工性能,挤注性能,贮存稳定性,无毒和低毒性。外露使用的密封膏,应有优良的耐候性。一般采用嵌缝枪施工。建筑密封带一般以合成橡胶为主体材料。在工厂预制成为有一定厚度的粘性条状物。外覆隔离纸。在现场按预制形状或任何需要的形状填封。
5.刚性防水材料
刚性防水材料主要可分为两大类防水混凝土和防水砂浆。主要原理是将外加剂或合成高分子材料经合理掺配加入水泥砂浆或混凝土中,起到减少或抑制孔隙率,堵塞毛细孔,增加密实性作用,而形成的具有一定抗渗能力的防水砂浆或防水混凝土。
防水混凝土是建筑物地下防水设防中的重要防水措施。地下工程防水技术规范中已明确规定:建筑物主体结构的地下防水应以防水混凝土结构为主防水层。
防水砂浆是将防水剂或合成高成子乳液等以一定量掺加到水泥砂浆中去,起到生成不溶物、堵塞毛细孔的作用。防水砂浆的防水能力与防水剂的种类、防水剂掺入量、防水砂浆的施工工艺有很大关系,尤其防水砂浆层与基层的粘结性能极为关键,防水砂浆只有和基层结合为一体共同作用才可能产生预期的防水效果。
6.结束语
总之,在每种材料的选择上,根据工程的部位、条件、所处的环境、建筑的等级、功能需要,选用适当的材料,因为每种材料都各有其特性,因建筑物的不同,才能让各类材料的特性发挥好,才能获得最佳的防水效果。■
参考文献
高分子材料的主要性能范文篇11
关键词:高分子材料;成型;控制
0前言
作为一种实际应用效果良好的材料,高分子材料在近期得到了广泛的应用。研究高分子材料成型及控制,能够更好地提升其实践水平,从而有效保证高分子材料的整体效果。本文从概述高分子材料的相关内容着手本课题的研究。
1概述
现阶段我国在高分子合成材料方面取得了很大的进步,相关行业的生产活动也在不断发展壮大,高分子材料成型加工技术被运用与汽车等工业生产活动之中。高分子合成材料行业已经发展成为我国的重要经济类产业,是国民经济的重要组成部分。由于高分子材料的特性,必须加强对高分子材料的系统性研究,了解高分子材料的成型过程以及控制对策,为高分子材料工业的发展提供依据,是我国科研工作的重要任务。高分子材料成型加工技术属于一门重要的科学,国内外著名的专家学者都对其予以高度关注,将与化学、物理等方面的专业内容融入到高分子材料成型加工技术中,为研究工作的开展提供科学依据。
2高分子材料的基本成型方法
2.1挤出成型
高分子材料的基础成型是通过螺杆旋转加压的方式,不间断的将已经成型的材料由有机筒挤出来,挤入到机头中去,熔融物料通过机头口模成型为与口模形状相仿的型坯,然后借助相应的牵引工具把成型的材料不断的在模具中提取出来,并对其进行冷却处理,进而得到相应的形状。挤出成型是一项系统性的工程,由入料、塑化、成型以及定性等过程,每个环节都对高分子材料的成型起到关键性的作用。
2.2吹塑成型
吹塑就是通过中空吹塑的方式来实现的,主要是依靠气体的压力,来促使处于闭合状态的热熔型胚发生鼓胀,进而形成中空制品的技术过程。吹塑成型是高分子材料成型的另一种主要方式,具有发展快、效率高的特点。吹塑成型的主要加工模式是挤出、注塑和拉伸,是目前常用的三种吹塑方法。
2.3注塑成型
一般情况下,我国高分子材料加工行业普遍采用的成型方法是注塑成型,其面对的生产对象大都是空间感强、立体式的材料形状,在塑料生产方面具有诸多的优势,受到了企业的广泛关注和应用。注塑成型方式应用的范围相对较广,成型操作所需时间短、多样的花色、生产效率高等等优点,是高分子材料成型最具实用性的方法。
3现阶段高分子材料成型技术的优化与创新分析
3.1聚合物动态反应加工技术及设备
现阶段,通过对国内外高分子材料成型技术的研究,大都采用反应加工设备来开展工作,但是,该反应加工设备的原理是在原有的混合、混炼设备上进行完善与优化所生产的产品,其还存在多方面的问题,处于不成熟阶段,传热、混炼过程等都是其中的典型问题。另一方面,设备引进和使用投资大、能耗高,噪音污染严重、密封困难。
利用聚合物动态反应加工技术及设备来创新与优化高分子材料成型加工工作,相较于传统的技术有了很大的进步,加工原理以及设备的组成都有所不同。此种技术的应用,其核心内容是将电磁场条件下的机械振动厂投入到高分子材料的机头挤出操作中,能够实现对化学反应、生成物的聚合结构、制品的各项变化等的控制,起到了良好的应用效果。
3.2新材料制备新技术
信息与科学技术的不断发展,在各个领域都得到了广泛的应用,为了优化和升级高分子材料成型加工技术,可将信息存储光盘应用到加工技术中,利用盘基来直接实现反应成型技术的构建,整个成型技术形成动态式、链条式的操作流程,树脂的生产与加工、储备与运送,再到盘基的成型,探索出酯交换的链条式生产与加工技术,能有效控制能源的使用率、提高成品的质量。
新材料制备新技术的出现,为高分子材料加工行业的发展提供了发展契机,动态全硫化制备技术也是其中的代表,是我国科学技术不断发展的重要体现,新技术的应用与振动力场具有密切的联系,可以更为直观有效的控制硫化的整个过程,能很好的应对硫化过程中所遇到与相态有关的反转类问题。针对此项技术,科学家应致力于研究与技术相匹配的更具全面化的设备,为我国高分子材料加工水平提供技术支撑。
4高分子材料在成型过程中的控制
近年来,我国由于综合国力的提升,在科学领域取得了一项又一项瞩目的成绩,其中高分子材料在成型过程中的控制是研究的主要课题之一。高分子材料在一定条件下极易发生结构上变化,温度、外力等都是影响高分子材料所形成的聚合物的结构与形态,同时在外部条件的影响下,高分子材料还会发生聚集形态上的变化,一系列的问题都是现阶段科学家研究的主要问题。通过不断的研究,科学家得出了一系列的成果,实现对新型高分子材料的开发,形成了多元化的高分子材料群体,并投入实际的应用之中,促进了高分子材料工业的发展。通过研究,科学家发现,大部分聚合物多相体系存在不相溶的现象,制约着成型过程中的控制工作,为了改善此类情况,可以适当的融入第三组分。在聚合物生产与加工的过程中,所研制出的产品会处于温度不稳定的环境中,由于制品极易受到温度的影响而发生形态和结构上的变化,进而影响其性能,应加强对制品温度的控制。由于制品的温度会随着时间推移为发生动态上的变化,可见,了解在非等温场条件下,聚合物、共混物制品温度与时间的变化关系是非常关键的,并对变化的规律进行总结,可为成型过程中的形态结构控制提供依据。
5结语
本文以高分子材料成型方法和控制进行了具体性的分析,我们可以发现,高分子材料的多项优势决定了其在实践中的应用地位,有关人员应该从其客观实际需求出发,充分利用自身有利条件,研究制定最为符合实际的成型及控制实施方案。
参考文献:
[1]杨帆.浅析高分子材料成型加工技术[J].应用科学,2011(08):66-68.
高分子材料的主要性能范文篇12
关键词:交叉学科;本科教学;互动;创新思维;实践认知
中图分类号:G642.0文献标志码:A文章编号:1674-9324(2013)07-0143-03
现代社会科技进步日新月异,创新性的研究和产品不断涌现,其中非常多的成果都来自于交叉学科的贡献。一个已经被普遍接受的共识是:学科交叉点往往就是科学新的生长点、新的科学前沿,这里最有可能产生重大的科学突破,使科学发生革命性的变化;同时,交叉科学是综合性、跨学科的产物,因而有利于解决人类面临的重大复杂科学问题、社会问题和全球性问题[1]。所以,对于本科教学中的交叉学科课程的教学就提出了更高的要求,如要求教师纵览多个学科的发展,从而能站在交叉学科的前沿来引领学生去认知和创新性思考;同时,也要求学生积极主动地去检索相关资料,能互动地参与到整个课程教学的过程中来。只有这样,交叉学科的本科教学才能获得理想的教学效果,提高学生的科学敏锐力和培养学生的创新性思维。尽管教育界对交叉学科研究生阶段创新型人才培养已有较多思考[2],但是迄今为止对交叉学科的本科教学的交流还很少。
本文以四川大学高分子科学与工程学院开设的“生物高分子及制品”课程教学为例,从课堂教学的多个方面提出了对交叉学科的本科教学的思考和体会。
一、课程背景
“生物高分子及制品”是四川大学高分子科学与工程学院为大三学生开设的一门课程,任课教师均来自我院医用高分子材料及人工器官系。医用高分子材料专业建立于1978年,并分别于1986年和1992年获得硕士、博士学位授予权,是我国最早的培养生物医用高分子材料专业人才的基地之一。系内的教师在生物医用高分子材料及人工器官的科研、教学方面有30多年的丰富经验。本课程所使用教材主要为我系老师合力编写的普通高等教育“十一五”部级规划教材《生物医用高分子材料》[3],并结合科研前沿做了丰富多样的专题讲解。目前一个年级有三个班平行授课,每个班的人数在70~90人。本门课程是典型的交叉学科产物,其内容涉及生物医学、材料学(高分子材料)、工程设计、医疗器械等多个领域。教材的主要章节包括绪论、高分子材料和生物体的相互作用、生物医用高分子材料的生物相容性和安全性评价、人工器官用高分子材料、医疗诊断用高分子材料、药物缓控释高分子材料、软硬组织替代和组织工程用高分子材料、医用高分子材料的设计。根据我院学生学术研究发展方向和工程应用发展方向并重的特点,在课堂讲授的时候授课教师会尽量同时扩展到前沿的科研领域(如医用高分子非病毒基因载体)和相关产业的应用环节(如生物医用高分子材料制品的生产、消毒)等。考查方式以课堂讨论、平时成绩和期末笔试成绩综合打分。
二、互动式授课的几点思考与体会
1.综合多学科领域的讲解方式。生物医用高分子材料是功能高分子材料中重要的组成部分,是指在生物及医学领域所使用的高分子材料。总体而言,本课程是两个一级学科:材料学(其中的高分子材料)和生物医学工程学(其中的生物材料)的交叉点。两个学科的跨度很大,如何能生动形象地讲解和引领学生思考至为关键。例如,在进行人工器官用高分子材料的讲解时,我们通常会采取由浅入深的启发式教学方法。首先,我们将人体器官做一个对应的抽象化的模型,其中包括脑—计算机、耳—声音探测器、肺—气体交换器、心—泵/液体输送器、肝—化学工厂、肾—分离/净化系统和血管—输送管路等,以方便同学们从功能上理解人体器官并能针对性地对人工器官进行设计、思考。通过讲解,同学们了解到研究人工器官并不能简单考虑其与人体组织器官的类似,更重要的是能使其再现或部分再现人体器官的功能。举例来说,在讲到人工肾时,我们会先从医学的角度讲述肾脏的结构和功能,重点描述肾小球的滤过作用和肾小管的重吸收作用。其中,肾小球每天以125ml/min的滤过率处理约180L的血液,肾小管将滤过液中大部分的水、电解质、葡萄糖和其他小分子有用物质重新吸收入血液,而每天最终排尿量仅为2.0L。通过上述讲解,同学们可以清楚地了解肾脏在人体中的主要功能,那么进一步的关于人工肾功能设计的讲解也就顺理成章了。人工肾是血液净化技术中所使用的最重要的人工器官,再通过进一步关联讲解病理学的内容,我们可以使同学们了解到使用人工肾的血液净化技术的目的和意义在于治疗与血液相关的疾病,既包括肾脏方面的疾病如肾衰竭,也包括各种由于血浆成分发生病理改变而产生的血液性或免疫性疾病,如巨球蛋白血症、系统性红斑狼疮、血友病和多发性骨髓瘤等。紧接着,针对不同的疾病和需要去除致病物质,我们很自然就将知识点转到不同的血液净化技术上来,分别讲述血液透析、血液滤过和血液透析滤过三种人工肾技术。最终,三种不同的人工肾技术就引出了不同的生物医用高分子材料和制品的需求和设计:通过对用于人工肾的各种生物医用高分子材料的化学成分、物理性能的分析,以及对完成其制品的各种工程技术的描述和表征,使同学们融会贯通,掌握这个跨多学科交叉领域的知识点。再举一个例子,在讲组织工程用高分子材料章节时,由于这是一个非常前沿的跨生物学、医学和材料学的交叉领域,如何有机结合多学科知识使同学们带着兴趣学习就非常关键。首先,我们会用“人耳鼠”等组织工程经典的图片展开绪论,使同学们的目光一下子就被吸引住了,让他们去思考:人类科技的进展真的有一天能实现更换人体的各个组织器官吗?由于多个现实的案例摆了出来,他们就会意识到这是有可能并已经部分实现了的前沿科技。进而,我们就会用搭房子来做一个形象的比喻讲解组织工程的三要素:细胞是砖块,生长因子是建筑工人,而生物材料就是整个房屋的支架。而组织工程支架材料对生物相容性、生物降解性能的要求就使得生物医用高分子成了其中的首选。在这样的引领下,同学们的关注点自然就转到了我们高分子学科与组织工程的关系,并能带着兴趣学习接下来的组织工程的原理和方法、软骨组织工程支架材料、神经组织工程支架材料、血管组织工程支架材料、肌腱组织工程支架材料、皮肤组织工程支架材料、角膜组织工程材料、组织工程支架制品的制备方法等多个知识点。在讲解的过程中,我们还会播放组织工程培养细胞、体外构建人工血管等录像资料,让同学们更直观地认识生物医用高分子材料在组织工程中的应用。
2.学生积极参与的教学互动形式。除了教师的有效引领作用外,学生能否积极参与教学过程的互动也是交叉学科本科教学能否成功的关键。对于本课程,我们主要采取了课外检索学术资料做PPT报告和分组讨论的形式。如前所述,我们将人体组织、器官分开并做了一个对应的抽象化的模型。对应于此,我们将学生分成了若干个小组,安排每个小组负责准备和主持一个主题的PPT报告和讨论。我们会提前一周通知负责组的同学(通常为4~8人),事先与他们讨论讲述的主线和子方向,要求同学们分工合作,其中一些同学负责每人5分钟的PPT讲解,其他一些同学负责资料收集和整理工作。例如对肺的一个主题,通过一周的准备,同学们查阅了一定数量的文献资料,准备了精美的PPT资料和讲解内容:第一个同学做了呼吸系统和常见呼吸系统疾病的综述;第二个同学的报告集中于描述现有的呼吸系统手术(尤其是肺部手术)中使用的大量生物医用高分子材料和制品,例如包括呼吸道麻醉科导管、单肺通气封堵导管等医疗器械;第三个同学从人工肺的研究角度出发,用较多的学术资料描述了该领域的研究前沿,进一步通过阅读资料提出了现有研究的不足,并提出他们小组讨论后对该领域的展望;最后一个同学结合工程实际,从生产设备、生产工艺等方面描述该领域医用高分子制品的制备方法,并简单提及国内外的主要生产企业。通过这样的一个“准备—讲述”的过程,该组同学系统地掌握了交叉学科从基本概念到学术研究,再到工业领域的诸多方面,并能逻辑清晰地讲述给全班同学。在同学们的PPT讲述过程中,任课教师会组织听报告的同学们进行有益的讨论。例如,在讲解到有关生物医用高分子材料和制品的生物相容性的时候,有做报告的同学会以隐形眼镜为例讲解,其制备原料主要是聚羟乙基甲基丙烯酸酯类材料。这时,我们会请有戴过隐形眼镜的同学举手,并组织讨论:为什么隐形眼镜有日抛、月抛和年抛的区别,它们对材料的要求有何不同?为什么夜晚要取下眼镜进行清洗保养?作为使用者,自己戴隐形眼镜会有什么样的要求?通过这些问题的讨论,同学们可以进一步了解作为交叉学科的产品,生物医用高分子材料和制品不仅要在功能上满足使用的医学目的,还要求我们从材料学和工程学的角度去设计,才能获得较为理想的使用性能。而且这样的讨论也容易引起同学们的兴趣,避免过多过深的理论讲解会导致的注意力分散。在整个PPT报告和讨论的过程中,任课教师会针对同学们的资料准备情况、PPT讲解情况和讨论情况进行评价和打分,作为成绩考核的重要标准之一。
3.创造条件结合实践教学。交叉学科除了能在学术前沿激发出更多的创新性火花之外,往往还可以通过学科的交叉设计、生产出大量的实用的制品。本门课程针对的生物医用高分子材料和制品就是典型例子,其所涉及的产业主要为医疗行业和医疗材料(器械)企业。因此,创造条件结合实践进行教学就成了本门课程重要的组成部分。本门课程的授课教师大多与上述行业的企业有长年的产学研合作关系,已经完成或正在研发多项生物医用高分子材料和制品的工作,因而具备较好的实际条件进行实践教学。例如,任课教师与成都市的多家医疗器械生产企业建立了长期的科研关系,从而能将课程的认识实践带到其中的一些单位,包括人工肾的生产企业和医疗耗材(导管、输液制品)企业等。通过实习参观企业,以及在课堂上观摩老师带的各种生物医用高分子材料和医疗器械,同学们对这门交叉学科涉及的产业有了更好的认识。另外,经常有高端的相关行业展会在成都举行,例如2012年的第68届中国国际医疗器械秋季博览会在成都云集了国内外的多家企业。这种时候,任课教师就会及时公布展会时间,并鼓励同学们去参观,通过学习和对比国内外企业的产品,了解其设计理念和所使用的生物医用高分子材料。展会结束之后,我们会和同学们在课堂上针对展会上的所见所想进行很多有益的讨论,很好地帮助同学们更进一步地认识这门交叉学科的知识和产业。
4.结合教学内容邀请专业医生讲座的教学。结合课堂讲授内容,我们会定期或不定期邀请一些医生到课堂进行讲座,如讲授到血液透析时,我们会专门邀请四川大学华西医院肾内科进行血液透析的医生到课堂进行讲座,从医生的角度讲述医用高分子材料在血液透析制品方面的临床应用。通过这些讲座,使同学们更深刻了解医用高分子材料及制品的实际应用,增加了学习的积极性和兴趣。最后,由于交叉学科课程覆盖的知识面非常广,简单地进行死记硬背的考试是不适宜的。经过商讨,本课程的多位任课老师达成了一致的共识:平时的讨论和报告占学生成绩的很大一部分,期末考试以开卷方式进行,出题尽量是基于交叉学科的特点来综合性地考查学生的逻辑思维、判断和创新能力。通过八年多的教学实践,我们发觉本课程的教学互动效果很好,也起到了很好的引领作用,有很多学生对这门交叉学科产生了浓厚的兴趣,并相继进入了生物医用高分子材料和制品的科研或产业领域。
总而言之,交叉学科的独特性决定了对其本科教学方法的灵活性、多样性的要求。只有不断解放思想、更新教学理念和完善教学手段,才能保证交叉学科教学的质量,才能更加有效地提高同学们的兴趣和综合能力,为更高阶段的交叉学科创新性研究以及相关交叉学科的产业输送人才。
参考文献:
[1]路甬祥.学科交叉与交叉学科的意义[J].中国科学院院刊,2005,20(1):58-60.
[2]吴宜灿.学科交叉与创新型人才培养的实践与思考[J].中国科学院院刊,2009,24(5):511-517.
[3]赵长生.生物医用高分子材料[M].化学工业出版社,2009.
-
s技术论文范例(3篇)
3s技术论文范文篇1Abstract:inthispaper,the"3S"technology(GPS,RS,GIS)alsoexpounded,the3Sintegrationtechnologyanditsprospectsareintroduced,andwith3Stechniquetorel..
-
审计风险与检查风险的关系范例(12
审计风险与检查风险的关系范文关键词审计风险防备一、审计风险1.含义审计风险是指会计报表存在严重错报或漏报,而注册会计师审计后发表不恰当审计意见的可能性,包括固有风险..
-
对数控机床的了解范例(12篇)
对数控机床的了解范文篇1关键词:数控仿真;职业教育;实践教学;评教结合中图分类号:G642.0文献标志码:A文章编号:1674-9324(2016)16-0174-02数控加工技术产生于20世纪中期,该技术最早可..
-
对数控机床的意见和建议范例(3篇)
对数控机床的意见和建议范文篇1一、2015年工作总结(一)依法行政,强化准入管理认真贯彻《医疗机构管理条例》、《医疗机构管理条例实施细则》、《云南省医疗机构管理条例》、《..
-
植物妈妈有办法范例(3篇)
植物妈妈有办法范文篇1语文课上我学了〈〈植物妈妈有办法〉〉,老师让我们找一找,还有哪些植物妈妈有好的办法。苍耳妈妈的办法不好,把自己的宝宝粘在别的动物和人身上,让大家不..
-
森林资源保护的重要性范例(12篇)
森林资源保护的重要性范文篇1关键词:生态文明;森林;有害生物;防控生态文明是指人类在改造客观世界过程的同时,积极改善和优化人与自然的关系,建设良好生态所取得的物质与精神成果..
-
读书乐范例(3篇)
读书乐范文牙牙学语时,父母就开始为我订阅《婴儿画报》,从那花花绿绿的图案上,我感受到奇妙的世界。稍大一点儿,我最喜欢看的是《幼儿智力画报》、《儿童漫画》、《少儿画报》,..
-
读书与教育的关系范例(3篇)
读书与教育的关系范文关键词阅读行为高校图书馆阅读学分制动力1引言动力是在工作、事业进程中起推动作用的力量,动力要素健全与否,要素间关系协调与否,决定了它们能否克服阻力..