纳米技术的研究范例(12篇)

daniel 0 2024-04-08

纳米技术的研究范文篇1

关键词:纳米,中医药,经济,技术

引言:通过现在的问题反映,首先提出一些纳米技术的需求,再而阐述了纳米中医药的现状接着提出纳米中药化的好处和现在存在的一些问题,通过笔者的分析,一步一步的摄入了纳米技术在当前中国的国情来说要发展,提出一些相对的解决方法。引入纳米技术是社会的要求。最后说明自己的观点(总结)。

随着经济的发展,环境问题变得越来越严重。从而导致发病率变得越来越高。如果还是单靠过去的一味中药很难把病情完全治好。加上现在环境问题的特为严重和社会的需求量增多。很多中药材都是靠人工培育,但人工培育的功效始终比不上天然的。虽然实行了中医药的政策,解决了老百姓的看病难,看病贵的问题。但始终是不能从根本解决问题。加上纳米技术的进一步发展,因此将纳米技术融入中医药是社会的要求,社会的主流。纳米技术使中医药的药效得到更好的发挥。

那先由我们看看纳米中医药的发展

纳米中药制备技术的研究现状

医学上的发展就目前来说,提出最多的是中西合作和中医药现代化,但我们在中医药的现状中发现很多问题,例如上面所提的民生问题,为此我们要想一下有没有更好的方案解决目前的问题,随着经济的发展我,我国的纳米技术已达到一定的程度,并取得一定的成效,为使中药面向世界,并形成医学科新的经济增长点,应将现代的高新技术引入到中药制剂之中。随着科学技术的飞速发展,中药的现代化生产已成为现实。纳米技术的出现使得超微粉碎成为全世界各个生产领域的先进技术,日益显现出它强大的生命力和蕴藏的无穷财富。对于中国的国药—中草药尤为如此。可以说中药超微粉碎是中药的一次飞跃性革命。如果中国能胜利的打完这场“革命”,在医学生又是一个新的焦点。纳米技术是如何引进中医药中呢?首先注意的是纳米粒制备的关键是控制粒子的粒径大小和获得较窄且均匀的粒度分布,减小或消除粒子团聚现象,保证用药有效、安全和稳定。

根据目前的科技情况。纳米药物粒子的制备技术可以分为三类,机械粉碎法、物理分散法和化学合成法。通过宏观到微观的转型,实现了微观世界的并且是医学界的狂飙式发展。

中医药的理论基于对宏观的自然界,而纳米技术科研研究则是微观技术,现在把宏观与微观技术的有机组合能不能在医学上形成一们崭新的“宏微”中医理论学科呢?至于宏观中医药大家对它有了一定的了解,现在我只是对微观进行阐述。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米技术的引入是医学微观化,一方面由于纳米技术的引入为携带提供了一定的方便,以前,无论什么看一次病总要大袋小袋的提着,这只是对病者,如果像医院或一些医护机构,当他们想购买大量药物时不是很麻烦。引入纳米技术在这里就起了相当重要的作用,比如运输大量的药物,现在只须小盒便能搞定;另一方面,害怕吃药吗?害怕打针吗?不用怕,纳米技术中药话可以帮助你,把纳米级药物制成药膏然后贴于患处,可以通过皮肤直接接受不需要注射。由于纳米技术是对药物的微观化,比如将药物磨成粉状,加大了与病菌的接触面积,例如中药超细后的产品除用于散剂、颗粒剂、胶囊剂、片剂、中药口服散剂、胶囊剂、微囊外,把药物微化,这样可以提高药物在体内的生物利用度。增强中药的疗效,再者,纳米技术在中药加工方面的应用能保持中药原有成分的基础,使药效充分析出。另外,纳米粒子包裹的智能药物进入人体后,可主动搜索并攻击癌细胞或修复损伤组织。在人工器官移植领域,只要在器官外面涂上纳米粒子,就可以预防器官移植的排异反应。使用纳米技术的新型诊断仪,只需检测少量的血液,就能通过其中的蛋白质和DNA诊断出各种疾病。在抗癌的治疗方面,德国一定医院的研究人员将一些极其细小的氧化铁纳米颗粒,注入患者的癌瘤里,然后将患者置于可变的磁场中,使患者癌瘤里的氧化铁纳米颗粒升温到45-47摄氏度,这温度足以烧毁癌细胞,而周围健康组织不会受到伤害。同时,配合使用纳米药物来阻断肿瘤血管生成,饿死癌细胞。纳米中药化不知那些好处,据了解,纳米中药化将药物加工成纳米级的微细粒子,病人服药时,首先减轻病人的痛苦,有些病人怕吃药,如果制成了粒子状,病人一般是比较易接受,药物的真对性特别的强,药物就可能针对性地直达病灶,激活中药细胞活性成分,直接攻击病毒、细菌、重金属、毒质,细胞壁或细胞膜等障碍将不复存在,这样中药疗效可大大速率,尽快的减轻病人的痛苦,如治疗消化道疾病的药品“思密达”经纳米化处理后其药效提高了3倍。中药药效的加大、加快,使中药可与西药相媲美,为今后中药的发展创造了条件。使中药具有新的功能将中药加工至纳米尺寸之后,其细胞内原有不能被释放出来的某些活性成分由于破壁而被释放出来,有可能使纳米中药具有新的功能。此外,由于其给药途径,药物吸收方式等的改变,可能在药代动力学、药效学、药理学、药物化学等方面产生新的作用。并且中药有没有西药那样很多副作用,发展纳米中医药看来是必然的事了。特别的,一些科学家预言:由于纳米微粒的尺度一般比生物体内的细胞、红血球小得多,所以,有可能把含有计算机功能、人机对话功能和有自身复杂能力的纳米机器人送入体内而又不严重干扰细胞的正常生理过程。通过体外控制操作,获取体内多种生化反应的连续的动态信息,从而破解中药复杂的作用机制。

纳米中医药也存在一定的问题,那是值得我们深虑:

1.成分的混乱;由于纳米中药化加大了药的效用,但同时也是所需药的成分难以把握,例如你本来是需要的是5两A药材6两B药材4两C药材,但当你纳米化时,你会使药用发生了变化,使得吸收的药的分量不同,可能导致A多了或少了。纳米技术中药化使得生物利用度、溶出度较低等得以纠正,疗效得以增强。这种改变性质的作用使得传统中药所含的有效成分及其药效变得面目全非。严重的会造成安全隐患。为此对研究和发展纳米中药化造成了巨大的压力。

2.由于纳米技术是一种微观的世界,如果科学家对药物不是有充分的了解,当实行微观处理时可能会导致一些药物的分量不够或减少了别的分量,另外,需要谨慎地掌握纳米粒度与相关中药所含有效成分分子组成和分子量的关系,以防为获得纳米微粒而损坏了药物的有效成分。纳米级的研究并不像宏观的研究那么简单,如果一些技术错误了,结果可能要重做。

3.纳米中药因其粒度超细,表面效应和量子效应显著增加,使得药物的有效成分获得了高能级的氧化或还原潜力,从而影响药物稳定性,增加了保质和储存的困难。

4.加大了鉴别的难度,即超细状态下的中药是否还具有普通粉碎时所有的显微特征?如果原有的显微特征发生了改变,则又应建立何种更精细的鉴别方法?这是个重大的问题,对于纳米级的研究,考的是先进的技术。

5.纳米尺度的物质存在着生物安全性威胁问题,如果不能够有效地防止纳米尺度物质的接触或者摄入,可能会引起多系统的复杂病变。

所谓万物都有双面性,纳米中医药的引入一定上给我们带来了很多好处,但也有一些负面的影响,综合中国现在的情况,许多专家都认为发展纳米中医药是利大于弊。那就根据我国的国情出发,如何将纳米技术中医药引入。何如加大对纳米技术中医药的发展呢?

1.由于各级的懒散性比较强,如果国家不统一制定完全的行业技术标准,可能会导致某些地方的药用不高或某些地方的纳米中药技术只是一个梦想。如果国家有了一定的机构管理,一定的技术标准,那样可以使纳米药物统一化,安全化。所以国家应成立你执迷中医药的研究中心,一方面集中科研相关的技术连接,另一方面可以组织协调科研机构,高校试验室以及产业界的公共参与,进行重点攻关。

2.国家政府必须认真重视纳米医药的发展,毕竟市场是一个充满“利润”式的社会,很多时候,如果国家不重视药物的安全管理,可能不导致药物市场混乱,同时国家有必要组织一定实力和特色的中药类高校与纳米研究机构进行强强联合,通过集大家之智慧来进行纳米中医药化。这就是国家要加强宏观调控对纳米药物的管理。

3.由于纳米中药化是刚刚引进来的一个新学科,很多方面还没有完善,特别是纳米对技术的要求高,所以国家应增加国内纳米重要的博士研究站,在较高会议上培养和吸引综合性的科研人才投身到这个领域中去

4.加强国内研究基地的建设。改善基础设施条件,增加专项的投入,并重视知识产权的保护,加大纳米中医药的财政支出,因为外国对这方面有了一定的认识,由于他们的技术含量高,纳米技术早就名噪一时,所以,国家可以加大中外的合作,另外还有派人到外国学习先进的技术,通过只是的交流,国与国的合作,进一步提高中医药的纳米技术的发展。

总结:纳米技术是2l世纪最具发展前景的领域之一,它给中医药的现代化提供了新的思路和方法。通过对比中国的利弊,实行纳米中药化的转型不但可以促进经济的发展和提供取药的方面,在历史上也是一次伟大的改革,在一定的程度上提高了医学家纳米中医药的定位,而且在国外也是中医的地位提得更高。科学技术的迅猛发展,中医药也逐步走向世界,面临着前所未有的机遇和巨大的发展空间—纳米技术中药化,然而,基于其独特的理论体系,现代科学技术尚难与之有机地结合起来,这也成为阻碍中医药发展的最主要因素。随着纳米技术在中药研究开发领域的一些应用基础研究上获得突破,它必将极大地促进中药现代化的进程。在中医理论的指导下,中药纳米化技术作为实现中药现代化的关键技术,必将推动我国的中药尽可能快地走向国际市场。

参考文献:

1杨祥良基于纳米技术的中药基础问题研究[J].华中理工大学学报,20一104—105

2赵宗江,胡会欣,张新雪.中药归经理论现代化研究[J].北京中医药大学学报,2002年25

3.徐辉碧,杨祥良,谢长生,等.纳米技术在中药研究中的应用[J].中国药科大学学报,2001年32

纳米技术的研究范文篇2

【关键词】纳米技术电子技术未来展望

纳米技术在近几年中接连取得一系列的突破诸如碳纳米管的出现,纳米制造工艺的进步等等。纳米技术成为一个国家科技竞争力中非常重要的一个方面,其未来发展前景十分广阔。随着纳米技术的不断发展,纳米电子技术研究也渐渐取得突破。纳米电子技术成为国家信息技术发展那壮大疾驰在世界前列的根本推动力。也成为保持世界电子技术快速发展并使摩尔继续延续的重要影响因素。本文就当前纳米电子技术发展现状以及未来纳米技术可能的发展方向做出思考并提出相关刍议。

1纳米电子技术发展现状

1.1纳米电子技术优点及地位

传统硅基电子元件技术将很快面临其发展瓶颈,电子元件技术若想获得进一步发展必须对现有技术进行突破,微电子理念作为主流电子发展理念结合当前信息技术实现原理对未来电子元件技术实现必将以纳米电子技术为主要突破口,换言之,纳米电子技术是未来电子元件技术的必然发展趋势,是国家信息技术发展的必然选择,在国家科技发展中占有十分重要的发展地位。纳米电子技术有着许多优点,例如纳米电子元件体积非常小,集成度极高,运算速度以及处理速度非常快同时有着极小的耗能更低的散热。无论在制造领域,信息领域还是军事应用,纳米电子技术都⒂凶攀分广阔的应用。纳米电子技术凭借以上优点将能够实现许多的未被实现的技术诸如量子运算,更大的存储技术,VR技术,增强现实技术等等。可预见的,纳米电子技术应用将在信息领域实现革命性突破。

1.2纳米电子技术现阶段成果

在现阶段,纳米电子技术主要还是以实现纳米电子元件以及各种纳米电子材料为主。

1.2.1纳米电子材料

纳米电子材料研究在现阶段取得了很多成果包括纳米硅薄膜、纳米硅材料以及纳米半导体材料等等。现阶段对于硅基材料的更种应用还在进行,纳米硅材料的出现符合现阶段人们对于电子技术发展的需求,纳米硅材料应用有许多好处,运用纳米硅材料能制造出集成度更高,运行更稳定,能耗更低,效率更优的电子板以及处理器芯片。能够有效降低高性能计算机的生产成本。纳米硅材料相较于一般材料有着明显的技术优势,其在生活中的应用能够为人们带来更意料之外的便捷。

1.2.2纳米电子元件出现

电子元件的发展一直都在努力实现在单位面积上实现更多电路的集成,所以,在之前的发展中电子元件经历了集成元件发展,大规模集成元件,超大规模集成元件三个历史发展。最终相关电子设备由一整个房屋大小微缩到如今的桌面大小。电子元件发展进步有着很重要的意义。基于集成电路的发展进步融合纳米技术便出现了纳米电子元件。

1.2.3纳米电子技术现实应用

随着纳米电子材料发展以及高度集成的纳米电子元件出现,纳米电子技术开始真正的运用于医学军事等领域中。在医学领域中,纳米传感器使得现代医学细微部位研究取得突破,进一步的对人体生化反应中各种化学信息以及电化学信息进行展示。另外,纳米电子技术应用高级医疗设备制造出现了一大批如螺旋CT和MRI等高科技医疗设备的问世。纳米技术在医学其他领域也有着十分广泛的运用,这些都大大推动了医学行业的发展。

军事领域的应用更为普遍,专家预测未来的战争就是信息化的战争,掌握信息多的一方就能够获得绝对的主动,纳米电子技术推动了军事化信息战的发展。不仅如此,纳米技术应用与武器制造进而出现制导更精确的导弹,各种微型飞行器,纳米装备等等。军事领域获得快速发展。

2纳米电子技术未来发展展望

其实在目前,世界主要国家都已经加强对纳米电子技术的重视程度并积极进行着各种各样的推动纳米电子技术发展的计划。诸如美国的国家纳米计划,欧盟的框架计划等等。其中主要针对的方向是纳米电子学发展,纳米信息处理和纳米储存技术等。通过对世界主要国家纳米电子技术计划的分析能够看出未来主流纳米电子技术发展方向为纳米信息系统以及纳米电子学两个方面。具体方向将主要集中在新型电子元件开发制造,石墨烯材料研究应用,碳纳米管研究应用等等。

通过不断的开发制造新的纳米电子元件进而推动未来纳米级计算机技术出现。在未来,能够通过纳米电子技术实现量子晶体管技术,进而推动量子超级计算机出现为世界科技进步做出卓越贡献。

石墨烯以及碳纳米管应用于新一代的半导体材料中,新一代半导体材料将对未来的移动设备进步,未来虚拟现实技术发展,未来增强现实技术发展等等带来坚实的基础。

再进一步的畅想,纳米电子技术能够方便的用于人体,结合网络技术能够实现人体与网络的互联互动,人体的各种数据诸如身份信息,健康信息等等都能得到实时监控遇保护对人们的生活方式进行改变。纳米电子技术的不断突破还将会为太空电梯,海底隧道技术等等高精尖技术的发展带来推动。

3结语

纳米技术在当前发展迅速并且影响深远,抓住机遇,集中优势力量,进一步加强纳米电子基础研究和相关应用研究,抢占纳米电子技术高地,是推进我国新一代信息技术的快速发展的必然选择。加强纳米电子学基础理论研究,顺应世界发展潮流,特别是纳米电子器件中最基本的载流子输运现象及其规律的研究是把握好未来纳米电子技术的关键。

参考文献

[1]余巧书.纳米电子技术的发展现状与未来展望[J].电子世界,2012(02):20-25.

[2]刘长利,沈雪石,张学骜,刘书雷.纳米电子技术的发展与展望[J].微纳电子技术,2011(10):32-36.

[3]万亚力.纳米电子技术的发展与展望[J].中小企业管理与科技(中旬刊),2016(03):16-22.

[4]余稀,但涛.纳米电子技术的发展现状与研究展望[J].开封教育学院学报,2016(10):36-41.

作者简介

陈建(1978-),女,辽宁省锦州市人。任职河北省高校工业数据通信与自动化仪表应用技术研发中心,承德石油高等专科学校,讲师,大学本科学历,在职研究生,主要从事电子技术,工业数据通信方面的研究。

纳米技术的研究范文篇3

【关键词】纳米技术纳米中药制备技术

中图分类号:R283文献标识码:B文章编号:1005-0515(2012)1-235-01

纳米技术是指用单个原子、分子制造或将大分子物质加工成粒径在1~100nm的物质的技术[1]。纳米技术的出现标志着人类改造自然的能力已延伸到原子、分子水平,使得化学和物理学之间已无明确界限。中药有着悠久历史,其独特的药效在世界医学界占有举足轻重的地位。近年来研究结果表明,中药产生的药理效应不能完全归功于该药特有的化学组成,还与药物的物理状态密切相关[2]。当药物颗粒粒径小到一定程度时,药效可能会产生突发性的改变。纳米技术与中药学的结合,是提高中药有效利用率、药效快速释放等的关键所在。

纳米中药的制备是研究纳米中药的最基础也是最重要的问题,将纳米技术引入中药的研究时,必须考虑中药组方的多样性、中药成分的复杂性,所以,针对不同的药物,在进行纳米化时必须采用不同的技术路线,此外还必须考虑中药的剂型。纳米中药与中药新制剂关系十分密切,如何在中医理论的指导下进行纳米中药新制剂的研究,将中药制成高效、速效、长效、剂量小、低毒、服用方便的现代制剂,也是进行中药纳米化时必须考虑的问题。目前,纳米中药主要有一下制备方法:

1超微粉碎技术[3]

使用特制机械设备将原药材或提取物进行粉碎,使之达到纳米级。我国研制出了一种利用湍流原理进行粉碎的高湍流粉碎机,中药甘草的粉碎实验表明,产品粒径可达到1μm以下,对矿物质的粉碎则达到100nm以下,而且粒径分布窄。该技术可能将为物理方法制备纳米药物粒子提供高效方便的捷径。

2固体分散技术[3]

这是将药物以微粉、微晶或分子态均匀分散在无生理活性的载体中,药物在载体中的粒径小于100nm。该技术是通过物理分散而获得纳米药物粒子,若将药物包埋于不同性质的高分子聚合物中,可形成速释型或缓释型固体分散物。采用固体分散技术制备药物的固体分散体,常用熔融法、溶剂法、溶剂-熔融法、溶剂-喷雾(冷冻)干燥法、研磨法。不同药物采用何种固体分散技术,主要取决于药物性质和载体材料的结构性质、溶点和溶解性能等。固体分散技术在中药制剂青蒿素固体分散物、复方丹参滴丸、香连滴丸、苏冰滴丸等中已得到了应用。

3化学气象沉积法

在气体状态下发生化学变化形成所需要的化合物,并在保护气体环境下快速冷凝形成纳米粒子。

4超临界流体技术[4]

利用超临界快速膨胀法和气体反溶剂法可制备纳米粒。用超临界流体技术设备已得到了粒径为130nm的灰黄霉素纳米粒和125nm的四环素纳米粒。

5微乳化技术[5]

将油、水、乳化剂和助乳化剂按一定比例在一定温度下通过适当的方法混合而得。药物以粒径在10-100nm内的乳滴分散在另一种液体中形成的胶体分散系统。

6包合技术

包合技术也是一种纳米粒子的制备方法,它所采用的载体材料本身就是一种纳米尺度的分子材料,主要采用β-环糊精作为载体材料,经包合后可以增加难溶性药物的溶解度和溶出度,降低药物的刺激性,特别是中药易挥发性成分经包合后,可明显提高保留率,增加贮存过程中药物的稳定性。

7高压乳匀技术[6]

随着乳化技术的发展,尤其是高压乳匀机应用于制药业获得成功后,人们进一步研制物理化学稳定性好、粒径更小、毒性小、具有靶向缓释作用、适合于多途径给药的纳米新剂型。它是将药物溶解在高于5-10℃的内脂中,在搅拌下加入含有表面活性剂的水相中制成初乳,再将初乳通过高压乳匀机,制成纳米乳剂。

8超音射流技术[3]

通过在高压条件下流体的超音速微射流瞬时对撞,产生粒子间强烈的撞击作用,高度湍流作用和超声波空化作用,从而使物质瞬间达到纳米分散状态,在撞击过程中可同时完成辅料对纳米粒子的包覆而达到稳定分散的目的。

目前纳米中药的研究主要集中于利用纳米技术将少数成分比较明确的单体有效成分制成纳米制剂,或将原料药直接粉碎至纳米级,对大部分中药的纳米制剂研究还很少,主要是因为中药真正起药理作用的有效成分或有效部位研究本身就是一个难题;而且由于中药成分比较复杂,将其制备成纳米制剂需要克服的困难较多,因此,中药纳米制剂及技术是医药科研工作者的重要研究课题。

纳米技术在中药领域的应用前景取决于科学技术的发展,包括物理化学、生命科学、生物化学、材料学等学科的发展。尽管纳米技术应用于中药的研究和开发目前尚处于初始阶段,但它的新技术及新工艺,一旦用于中药的研究、开发和生产,不仅可为制药企业创造巨大的经济效益,造福于患者,而且更有利于中药的现代化、国际化,必将产生极其深远的影响。

参考文献

[1]郝存江,赵晓峰.纳米中药研究进展.天津中医药.2006,23(6):515-517.

[2]徐辉碧,杨祥良,谢长生等.纳米技术在中药研究中的应用[J].中国药科大学学报,2001,32(3):161-165.

[3]阳秀萍,陈登志,胡凤国.浅谈中药纳米制剂的研究方向[J].中国现代中药,2006,8(2):29-30.

[4]邱洪,王宝佳,李悦.纳米中药简介[J].中国药业.2005,14(4):78-79.

纳米技术的研究范文1篇4

关键词:纳米技术;水产药物;综述;展望

中图分类号:R978文献标识码:ADOI编码:10.3969/j.issn.1006-6500.2015.12.014

NanotechnologyinAquaculturalDrugsandTreatment

SUNJie1,BIXiang-dong1,YOUHong-zheng2,DONGShao-jie1,YANGGuang1,WURui1,YANGTong-zhi1,CHENTian-shuo1

(1.KeyLabortaryofAqua-ecologyandAquacultureofTianjin,DepartmentofFisheriesSciences,TianjinAgriculturalUniversity,Tianjin300384,China;2.TianjinFisheriesResearchInstitute,Tianjin300221,China)

Abstract:Nanotechnologyandnano-drugwerepresentedfirstly.Secondlytheadvantageofnano-drugagainsttraditionaldrugswascompared.Thentheapplicationofnanotechnologyinaquaculturedrugswasreviewed.Atlast,applicationprospectofnanotechnologyinaquaculturedrugs,developingdirectionandproblemsthatshouldbepaidattentionwereprospected.

Keywords:Nanotechnology;aquaculturedrugs;review;prospection

“纳米技术”(Nanoscletechnology)的概念是于上世纪90年首届国际纳米科学与纳米技术大会(美国巴尔的摩)上首次被提出来的[1]。目前,国际上公认的纳米尺度空间为0.1~100nm,亚微米体系范围为100~1000nm,原子团簇的尺度空间为小于1nm[2]。纳米技术是在纳米尺度空间研究物质(原子和分子)的物理和化学特性及它们之间的相互作用,通过一定的微细加工方式直接操纵原子、分子或原子团、分子团,使其重新排列组合,形成新的具有纳米尺度的物质或结构,进而研究其特性及其实际应用的一门新兴科学与技术[3-4]。目前,在生物学、材料学、显微学、电子学等研究领域纳米技术已经得到了广泛的应用,取得了突破性的进展[1]。

实际上,“纳米技术”概念的提出要晚于药剂学领域里对纳米粒子的研究。药剂学领域早在上世纪70年代便已经对纳米球、纳米脂质体聚合物和纳米囊等多种类型的纳米载体进行了广泛研究[2]。近年来,纳米技术在药物领域的研究和应用已逐渐成为热点,对该领域产生了深远的影响,催生了“纳米药物”的诞生。纳米药物的粒子存在的形式包括两大类:纳米晶体药物(其制作方式是将原料药物通过一定技术手段直接加工成的纳米粒)和纳米载体药物(以纳米级高分子纳米粒、纳米球、纳米囊等为载体,药物分散在载体中纳米化)[1,4-5]。有学者认为纳米药物粒径可能超过100nm,但通常应小于500nm[4]。包括大小在100nm以上的亚米微粒子,空间尺度在1~1000nm的药物在药物传输系统一般被界定为纳米粒[2]。

1与传统药物相比较纳米药物的优势

1.1特殊表面效应及小尺寸效应

纳米药物的分散粒径在1~100nm之间,使它具有特殊的表面效应和小尺寸效应等。在传统给药形式中,药物是以游离分子态的形式被吸收,而纳米药物以纳米聚集态的形式兼有分子态的形式被吸收。这使其具有了不同的体内过程,进而能够产生特殊的生物学活性[6]。较之传统常规药物,颗粒小、活性中心多、表面反应活性高、吸附能力强、催化效率高等特点是纳米药物所具备的主要优点[4]。

粒径达到纳米水平的药物颗粒的总表面积大幅度加大,提高了药物的溶出速率,增大了给药部位的接触面积,进而提高了药物的单位面积浓度。通过对纳米药物表面进行修饰,可以改变其表面特性,从而实现药物长循环的效果[4]。纳米药物的粒度处于亚微粒水平,且完整的多聚粒是胃肠道易吸收的形式。因而纳米药物可以通过胃肠道中淋巴样组织的集结淋巴结内M细胞的机制摄取,实现减弱药物的首过效应,以提高其的生物利用度[6]。机体不易将纳米颗粒当作异物排斥,纳米药物对于机体组织、血液和免疫系统等均具有良好的生物兼容性。纳米药物亲水性的表面可以使其免于单核细胞吞噬系统的吞噬,因而纳米药物在血液中具有较长的循环时间[7]。上述原因使纳米药物在药代动力学及药效动力学方面受到医药界的高度重视[1]。

1.2载体的优势

目前,纳米药物载体的主要种类有纳米囊、纳米脂质体、聚合物胶束和纳米球等,均具有类似生物膜性质的磷脂双分子层结构[6]。其突出优点在于:控制药物进入特定的靶器官或靶细胞,实现药物的靶向输送;药物通过纳米载体的囊壁渗透、沥滤、扩散,或通过被溶蚀的基质释放,避免了药物被体内的各种酶类水解,在延长其作用时间的同时,还提高了其稳定性及生物口服利用度;纳米载体材料可生物降解,无毒或毒性较低[8-9]。

载药纳米粒子通过改变生物膜运转机制,提高了药物对于生物膜的通透性,使其可以通过简单扩散或渗透的形式穿过生物膜。载药纳米粒子粒径小且具有良好的黏附性,延长了药物与吸收部位的接触时间,使吸收部位上皮组织黏液层中的药物浓度增加,并延长了药物半衰期,从而提高了药物的生物利用度。上述优点使得纳米药物可以减少使用剂量并保证作用效果,进而减轻甚至避免药物的毒副作用[4,8]。

2水产药物领域的纳米技术

20世纪50年代,我国开始进行水产病害研究工作。20世纪80年代以后,鱼药的开发逐渐形成了产业。与水产鱼药有关的开发和研究工作仍处于较浅的层次[10]。综合现有资料,纳米技术在水产药物方面的应用有以下几个方面。

2.1环境改良剂

环境改良剂以改善养殖水体为主要目的。目前环境改良剂主要包括水质改良剂、底质改良剂和微生态制剂等类型,但采用纳米技术的只有净水剂。综合使用效果和成本分析,纳米级高效净水剂具有净水效果好、综合成本低和应用范围广等优点。纳米级净水剂通过在极短时间内与养殖水充分混和、絮凝和沉淀,去除水中的异臭、悬浮物、异味及大部分杂质,其净水效果可达到普通净水剂的10~20倍。通过具有纳米级孔径的过滤装置,水中的细菌、病毒等微生物可被除去,从而实现了高效的净水效果[11]。

2.2消毒剂

消毒剂是指以杀灭水体中的病原微生物为目的的药物。水产药物中的消毒剂主要包括酚类、氯制剂、碘制剂和季胺盐类等[10]。现有药物在实际使用过程中均存在不同程度的诸如稳定性差、作用范围窄、效果不显著等缺陷。目前已经开发应用的水产纳米消毒剂种类较少,常见的有纳米碘,主要成分是纳米碘、季胺盐和WEQ等。通过对碘表面使用具表面活的非离子表面活性剂高分子化合物进行处理,在碘粒子表面形成一层由分散剂组成的保护膜,减弱或屏蔽了粒子间的缔合力,避免了粒子团聚,由此迅速增强碘制剂的杀菌能力和穿透性,并减少了药物有效成分的浪费;一般情况下高分子呈现卷曲状态,可以使用特殊的工艺技术,将碘微粒嵌入其中,以提高药物的稳定性和活性,增加其水溶性并减少药物的刺激性,同时可以达到缓释的效果[12]。

2.3抗病原微生物类药物

抗病原微生物类药物通过内服或注射的方式给药,起到杀灭或抑制体内病原微生物繁殖和生长的作用[10]。此类药物主要分为抗菌药、抗真菌药和抗病毒药。水产养殖中使用量最大、范围最广的抗菌药有抗生素类、磺胺类、呋喃类和喹诺酮类[13]。

目前,抗生素使用中的药物残留问题、交叉耐药性问题和多元耐药性问题在医药与兽药中普遍存在。更为严重的问题是,人在食用了残留有抗生素的畜禽及其制品后会引起对相关抗生素的敏感性降低[1]。早在20世纪90年代,我国学者就指出由于多种抗生素频繁在鳗鲡养殖中使用,导致鳗鲡病原菌对常用抗菌药产生了严重的抗药性,耐药范围达到了42.5%~90.9%,平均耐药率更是达到69.4%[14]。Inglis[15]从患疖疮病的大西洋鱿分离到304株杀蛙气单胞菌,其中55%的菌株对土霉素具有抗药性,有37%的菌株对于抗生素嗯哇酸出现耐药性,且有94.7%的耐药菌株在次年仍被发现。上述情况使得养殖动物疾病防治工作开展较为困难。具抗药性的水产动物病原微生物如果传播到其他水生生物或陆地动物,也将危害人、畜、兽及农作物[16]。

纳米技术的出现,为解决病原菌抗药性问题带来了新的思路。杨雪峰等[17]的研究指出制备恩诺沙星纳米乳的最佳纳米乳处方为肉豆蔻酸异丙酯(IPM)、聚氧乙烯蓖麻油-40(EL-40)、乙酸(HAc)和水,以此处方制备的恩诺沙星纳米乳对大肠杆菌ATCC25922和金黄色葡萄球菌ATCC25923的最小抑菌浓度(MIC)均为其原料药MIC的1/2。但是也有研究指出,由十六烷基碳脂肪酸为配方的恩诺沙星脂质纳米乳剂,利用金黄色葡萄球菌测定其MIC为0.25μg・mL-1,与普通恩诺沙星药物的值接近[18]。这表明,抗菌药物纳米化后是否能够增强药性,与其采用的纳米配方有关。宁二娟等[19]以聚乳酸为载体材料,采用溶剂挥发法制备的恩诺沙星聚乳酸纳米粒的包封率平均为71.0%,载药量平均为11.3%,平均粒径为66.8nm,粒径范围为30.0~117.5nm,电子透射显微镜下观察纳米粒,基本呈较光滑圆整的球形,较均匀,且粒径分布较窄。Bariak等[20]在研究中报道了一种新型纳米管药物,可以杀死包括对传统抗生素形成抗药性的细菌。这表明可以通过对纳米药物进行修饰提高其抗菌和抑菌效果[1]。

现有的纳米抗菌剂还有纳米TiO2、纳米ZnO和纳米SiO2及其银系纳米复合粉等。上述药物具有量子尺寸效应、巨大的比表面积和独特的抗菌机制,较传统抗菌剂、有机类和天然类抗菌剂其综合抗菌效果更佳优良。其中纳米ZnO因为具有一般ZnO无法比拟的优越性而被称为面向21世纪的新饲料业产品。纳米ZnO化学活性极强,可以与多种有机物(包括细菌内的有机物)发生氧化反应,杀死大部分的细菌和病毒。将纳米氧化锌拌入饲料投喂,鱼类不会产生耐药性[21]。SiO2银系纳米复合粉体是一种无机纳米抗菌剂,通过离子交换的方法在纳米材料的基础上制得。使用时,SiO2银系纳米复合粉体中可缓释银离子,通过银离子进入微生物细胞内破坏其蛋白质结构,引起细胞的代谢障碍,从而达到杀菌的目的。其杀菌效果集安全性、广谱性为一体,较常规的银系无机抗菌剂具更好的抗菌效果和更长的抗菌时间[22]。

2.4杀虫药

杀虫药通过药浴或内服的方式给药,作用是杀死或驱除养殖动物体内外的寄生虫并杀灭水体中有害无脊椎动物[10]。常用的杀虫药包括硫酸亚铁、硫酸铜、有机磷杀虫药(敌百虫)、抑除虫菊脂杀虫药和有机氯杀虫药等。其中敌百虫因具有毒性较低、药残少、残留时间较短的优点被广泛地适用于水产动物体外寄生虫(甲壳类、单殖吸虫及部分肠道寄生的蠕虫等)的防治[13]。

由于兽医临床和畜牧业生产中杀虫药的广泛应用,以及药物滥用和错误使用,使得水产杀虫药同样面临病原虫抗药性问题。例如敌百虫对金鱼指环虫病的治疗效果已经大打折扣,很多情况下养殖户使用了正常剂量的3~5倍都得不到很好的疗效。甚至发生过因药剂量太大引起金鱼中毒死亡的事件。目前纳米化水产杀虫驱虫药并不多见,在这方面还有很多工作有待开展。

2.5中草药类水产药物

中草药类水产药物是天然药物,用以水产养殖动物的疾病防治或健康改善,其形式一般是经加工或未经加工的药用植物[10]。中草药用于水产动物疾病治疗是近年来的研究热点之一。鱼药中的中草药从功能上分为抗细菌类(如大黄、黄连、大青叶等)、抗真菌类(如白头翁、苦参等)、抗病毒类(如板蓝根、野菌等)和杀虫类(如苦楠皮、使君子等)[10]。另外,有学者报道五倍子、黄芩、诃子、乌梅、石榴皮五种中草药对迟缓爱德华氏菌(Edwardsiellatarda)和嗜水气单胞菌(Aeromonashydrophila)的体外起不同程度的抑菌效果[23]。丁香、薄荷、八角和黄连对丁i具较好的诱食效果[24]。

1998年国内学者通过将牛黄加工至纳米级水平,使其理化性质发生变化,发现其疗效得到了提高,且具有一定的靶向性和新作用,遂提出“纳米中药”一词。研究表明纳米级的中药在化学、物理和生物学特性方面可出现较大变化,从而出现新的效果。较传统的中药,纳米中药在生物利用度、靶向性和低不良反应方面具有明显的优势[25]。梅之南等[26]通过纳米技术将雷公藤内酯醇制成固体脂质纳米粒,减少了服药小鼠体内MDA的产生量。这表明固体脂质纳米粒可通过减少小鼠体内雷公藤内酯醇的脂质过氧化反应,降低雷公藤内酯醇对肝脏的毒性。王俊平[27]使用纳米技术用薏米仁油制备紫杉醇微乳,发现给药后的紫杉醇组动物于第5天开始死亡,于第14天死亡率达到90%;而紫杉醇微乳组动物在14d内未出现死亡。这说明纳米技术可以显著降低紫杉醇的毒性。

纳米化水产中草药鲜见于报道,笔者所在研究团队采用处方为表面活性剂吐温-80、助表面活性剂甘油、油相大豆油及水成功制备出高效抑杀养殖水体有害藻类的纳米药物―盐酸小檗碱纳米乳,可显著提高中草药小檗碱的抑藻率,有效控制养殖水体有害蓝藻的爆发。我们采用处方为表面活性剂聚氧乙烯蓖麻油-40、助表面活性剂乙酸、油相肉豆蔻酸异丙酯及水成功制备出高效的抗菌纳米药物―肉桂醛纳米乳等系列水产用纳米药物,可显著增加养殖动物对抗菌药物的吸收利用率,大幅降低养殖上述药物的最小抑菌浓度,提高养殖动物细菌性疾病的防治率,增加养殖产量。

3展望

我国人口众多,水产自然资源相对贫乏,紧靠捕捞不足以满足人们对水产品日益增长的需求。近年来,水产养殖技术发展较快,产量逐年提高。随着养殖模式不断改进,高密度的集约养殖和立体养殖技术被广泛应用,新品种引进和原有品种改良,新病原入侵、病原对现有鱼药产生抗药性和环境安全性等问题逐步显现。现有鱼药体系已逐渐不能满足水产行业发展的需求,这对水产病害的研究工作和新型鱼药的开发提出了更高的要求。纳米技术在鱼药开发和生产中的应用有望成为解决上述问题的有效途径之一。

目前,鱼药纳米化正处于起步探索阶段,其进程落后于其他兽药,较之医药领域差距更大。纳米化鱼药的研发可以参照其他兽药和医药纳米化研究中取得的宝贵经验和成果,在纳米晶体药物微粉方法、纳米载体配方、新纳米载体研发等方面进行有益的探索。

据报道,约40%具有活性的候选药物由于在水中溶解度低[28]。溶解控制是难溶性药物在体内被吸收的限速步骤。通过加大药物溶出速率可显著的提高其生物利用度。通过纳米技术减小药物粒径可增加其比表面积,例如将药物的粒径由10μm降低至200nm,可增加其比表面积50倍,而难溶性药物的生物利用度与其比表面积大小密切相关。这表明可以通过纳米技术提高难溶性药物的溶解速率进而改善其生物利用度[29]。纳米级超细微粒状态的难溶性药物和生物大分子的溶解度增大,附着性增强,吸收率提高,有效地增强了疗效[5]。综上所述,纳米技术的出现为新型鱼药的开发提供了技术支持。

任何事物都有其两面性。有研究指出中性和低浓度的阴性纳米粒子不会威胁到血脑屏障,而纳米粒子的表面电荷使得阳性和高浓度的阴性纳米粒子对血脑屏障具有毒性。有研究指出纳米粒子对空气、水和土壤均可产生影响,可在食物链中累积,这可能严重威胁到自然中的生物和人类的健康[30]。这提示我们在开发纳米鱼药的同时也应该关注鱼药纳米化后其自身毒性和生态毒性等方面的变化。

参考文献:

[1]张继瑜,刘根新,吴培星,等.纳米药物的研究现状与展望[J].安徽农学通报,2007,13(18):139-142.

[2]平其能.纳米药物和纳米载体系统[J].中国新药杂志,2002,11(1):42-46.

[3]马国,邓盛齐.纳米技术在药学中的研究应用进展[J].国外医药抗生素分册,2004,25(5):233-237.

[4]王子妤,张东升.纳米药物的研究进展[J].东南大学学报(医学版),2004,23(2):131-135.

[5]周丽莉,礼彤,王立红,等.超临界流体技术在纳米药物制剂中的应用[J].中国药剂学杂志,2005,3(6):341-345.

[6]KAKUMANUVK,ARORAV,BANSALAK.Investigationoffactorsresponsibleforloworalbioavailabilityofcefpodoximeproxetil[J].IntJPharm,2006,317(2):155-160.

[7]谭文超,左金梁,吴秀君.纳米药物的药动学研究概况分析[J].实用药物与临床,2014,17(7):906-910.

[8]阚思行,王晓文,唐劲天,等.纳米药物控释系统研究进展[J].药学学报,2009,25(2):169-171.

[9]易承学,余江南,徐希明.纳米药物载体在中药制剂研发中的应用[J].中国中药杂志,2008,33(16):1936-1940.

[10]陈鹏飞.鱼病流行现状与鱼药的开发利用[J].中国动物保健,2003(23):32-36.

[11]王维一.纳米技术及其在水处理等方面的应用[J].城市给水,2001,15(1):25-26.

[12]叶金明,郑宗林.纳米技术在水产养殖中的应用展望[J].科学养鱼,2006(11):6-7.

[13]李辉华,王广军.常用鱼药的分类及在使用中存在的问题[J].水利渔业,2001,21(2):44-45.

[14]陈会波,林阳东,翁玲,等.鳗鲡赤鳍病病原菌的分离鉴定和耐药性的研究[J].水生生物学报,1992,16(1):40-46.

[15]INGLISV.AntibioticresistanceofAeromonassalmonicidaisolatedfromAtlanticsalmon,SalmosalarL.inScotland[J].JofFishDiseases,1991(14):353-358.

[16]樊海平.水产药物开发的几个问题[J].海洋湖沼通报,1994(1):94-98.

[17]杨雪峰,齐永华,宁红梅,等.恩诺沙星纳米乳的制备及其质量评价[J].浙江大学学报(农业与生命科学版),2012,38(6):693-699.

[18]杨春蕾,李丽娟,周文忠,等.恩诺沙星脂质纳米乳剂对断奶仔猪血液生化指标的影响[J].中国兽药杂志,2012,46(11):20-23.

[19]宁二娟,刘慧娜,蔡源源,等.恩诺沙星纳米粒的制备及其药剂学性质研究[J].河南大学学报(医学版),2008,27(1):28-30.

[20]BARIAKJM,GHADIRIMR.Self-assemblyofpeptidebasednanotubles[J].Materialsscienceandengineering,1997(4):207-211.

[21]周进,黄停宋晓玲.纳米科技在水产养殖中的应用前景[J].农业新技术,2003(5):36-38.

[22]江勇,孙丽娜,边连全.纳米科技在水产养殖中的应用[J].中国畜牧兽医,2005,32(2):16-18.

[23]马玉和,王庆奎,郭永军,等.5种中草药对迟缓爱德华氏菌和嗜水气单胞菌抑菌效果的比较[J].饲料工业,2014,35(6):51-54.

[24]白东清,王凤霞,郭永军,等.中草药对丁i诱食效果的初步研究[J].天津农学院学报,2009,16(1):5-8.

[25]吴芸,严国俊,蔡宝昌.纳米技术在中药领域的研究进展[J].中草药,2011,42(2):403-408.

[26]王俊平,王玮,赵丽妮.紫杉醇微乳抗肿瘤作用的研究[J].中国现代医药杂志,2009,2(11):10-12.

[27]郭义明,赵敬哲,于开锋,等.矿物药炉甘石成分分析及其纳米形态的抑菌活性研究[J].高等学校化学学报,2005,26(2):209-212.

[28]LIPINSKICA.Drug-likepropertiesandthecausesofpoorsolubilityandpoorpermeability[J].JPharacolToxicolMethods,2000,44(1):235-249.

纳米技术的研究范文篇5

关键字:纳米技术;建材;性能;功能

纳米技术不仅具有相当的理论研究价值,而且在当下和未来都具有广泛的应用前景,是最近十多年来最具发展和研究前景的技术之一。早在上个世纪的八十年代末,纳米科技的研发就受到了世界各国的重视,甚至有部分走在前沿的国家已经实现了对该项技术的应用。现阶段来看,纳米科技已经在不少的传统行业中得到了应用,例如:医疗、食品科技以及建筑材料等。其作为一项新兴科学,对建材的影响较大,不仅提高建筑工程的质量水平,更使得建筑的功能性和适用性得到了强化。同时,纳米技术的应用对我国建筑行业而言也具有相当重要的意义,尤其是通过高新技术的优势来拓展国外市场。

一、纳米技术的发展及其现状

距离最初概念的提出,纳米技术已经有40多年的发展,但是其仍旧还有许多的发展空间,可以发展出更多的功能和应用方向。从纳米材料的内涵和特点来看,其发展大致可以划分为三个阶段。第一阶段(1990年以前)。这一阶段主要是进行理论探索和研究,并且尝试利用各种手来制造出具有纳米颗粒的粉体,甚至是块体(包括薄膜)。并将制造的方法进行评估和总结,对其特性进行归纳和分析。研究的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。第二阶段(1990~1994年)。这一阶段是人们对该技术应用的理论提升阶段,通过其他学科的融合,纳米材料在物理和化学之中的性能特点已经得到了一定的发掘,并且应用到复合型的材料设计之中。同时,这种粒子复合、块体复合以及复合材料的合成物都该项技术在这一阶段的研究重点方向。第三阶段(从1994年到现在)。这一阶段的技术研究和应用已经有了不断的拓展,也受到了来自于民众的关注,国际上更是掀起了一股发展高潮。若是对第一阶段和第二阶段进行总结,前两个阶段的研究还存在一定的盲目性,在这一阶段已经具有明确的方向,技术上也可以满足人们的操作意愿,来进行设计、组装、创造新的体系,并且使之具有人们所希望的特性。

二、纳米技术在建筑材料中的应用

(一)纳米水泥的应用

普通的水泥混凝土往往会具有较大的刚性,而缺乏柔性,这也使得水泥存在固有缺陷难以解决,往往会在今后的施工过程中出现开裂及其他破坏问题。而纳米技术的应用者有效的对该类问题进行了解决。因为在应用了纳米技术之后,混凝土的强度、硬度、抗老化性以及耐腐蚀等性能得到了有效的强化,同时还可以对电磁波和声音进行有效的吸收,满足了建筑物对隔音效果的要求。同时,这类材料也应用到一些特殊建筑使用当中。

(二)纳米玻璃的应用

普通的玻璃往往自动的吸附空气之中的各类有机物,从而是玻璃表明形成一种难以清洗干净的有机污垢。同时还存在其他的不足之处,影响玻璃的透视度。例如:玻璃容易产生水雾,从而使得可见度受到极大的限制。然而,通过利用Ti02来对平板玻璃正反两面进行薄膜的镀制处理,则可以有效的决解这类缺陷所造的影响。除此之外,Ti02作为光催化剂在阳光的作用下,还能够对甲醛和氨气等有害物质进行分解和消除。同时,这类措施的应用也可以更好的提高的玻璃在透光性和机构强度等方面的效果。这种玻璃的应用极大的减小了屏幕玻璃、大度玻璃、住宅玻璃等领域的人工清洗困难,节约了清洗的人工或机械成本。

(三)纳米技术在陶瓷材料中的应用

由于陶瓷具有很强的耐高温性和抗腐蚀性,而且还具备相当的观赏性,因此得到建筑产业的广泛青睐,尤其是在进行墙体和地面的装饰时。然而,陶瓷却及其容易发生脆性损坏,这也造成了该类材料的应用范围受到了极大的限制。将纳米技术融入到陶瓷材料的开发和研制之后,却使得该类材料具有比过去更高的可塑性,甚至可以吸收一定的外来能量。甚至有部分研究生独创性的将金属碳纤维加入到陶瓷材料之中,极大的提升陶瓷的强度,同时具有极其优秀的抗烧烛性,故而这类材料也被应用火箭喷气口的制作。用纳米级SiC、Si3N、ZnO、Si02、Ti02以及A1203等粒子所制成的陶瓷材料,具有比以往更加高的硬度和韧性,即使是在较大的温差之下也能够保持原有的形态,不会参数破损,具有相当广泛的应用范围和前景。

(四)纳米技术在防护材料中的应用

目前的比较常用的防水材料是通过在胶料中加入炭黑等物质来形成,这种材料虽然制作简单,价格便宜,但是却没有较长的使用寿命,极易在使用过程中发生的腐蚀和老化,给居民生活带来了极大的不便。因此,建筑材料的研究者们也髙希望可以研制出具有强、耐腐烛、抗老化性能的防水材料。在通过不断的研究和技术融合之后,纳米级的防水材料得以被研发出来,这种材料最早被北京建筑科学研究院所发现,具有较强的耐腐蚀和耐老化性能。这种纳米材料所制造的防水卷材,拥有一定的强度和韧性,更比传统材料表现出了更高抗老化性和光热稳定性等,从而得到建筑工程的广泛运用。

(五)纳米保温材料

近几年来,我国逐步强化了对节能减排的要求。在建筑施工的过程中,也越发注重对建筑保温性和环保性的标准,尤其是针对目前我国大范围采用的传统保温隔热材料。因为诸如:聚氨酯、石棉等传统隔热保温材料会在使用过程中产生不少对人体有害的物质,甚至是人体癌症的主要诱因,同时也是大气污染的主要来源,这是我国建筑产业要尽快改善的部分。然而,纳米建筑材料的应用却有效避免了这部分的危害,例如:无机硅酸盐为主要原材料的纳米材料。该材料是经髙过高温和压才形成的一种纳米级功能性材料,具有良好的保温隔热性,但是同时有具有稳定的化学性质,不会产生对人体损害的物质,是我国目前比较倡导的一种绿色环保保温材料。

三、结束语

目前,纳米技术的研究已经是世界各国的重要项目。纳米技术在自身不断发展的同时也对许多传统行业产生了不少的改进。从建筑行业来看,纳米建筑材料的应用必然会产生不小的推进作用,尤其是能耗优化、质量提升以及环保等多个方面。这样一来,建筑材料中纳米技术的应用水平便觉得该企业的竞争力水平,对于我国的建筑企业而言,正是走入世界舞台的重要助力,具有十分重要的现实意义。

作者:赵宇晗单位:辽宁建筑职业学院

参考文献:

[1]赵文轩,张越.建筑材料中纳米材料和纳米技术的应用[J].河南建材,2012,02:24-26.

纳米技术的研究范文1篇6

作为纳米科技的研究热点之一,基因工程近些年来发展得如火如荼。在基因工程中,DNA是生物学家关注的焦点,它的双螺旋结构是如此神奇,诱发了科学家们无限的艺术遐想。

DNA折纸术

2006年3月,英国《自然》杂志上发表了保罗・罗斯蒙德的杰作:一幅精美的二维结构的美洲地图。该作品是由DNA链折叠而成,是一个大约100纳米见方的“折纸作品”,它共包含了200个像素,每个像素均为一条短的DNA链。这是一个连高倍光学显微镜都无法分辨的作品,必须依靠分辨率极高的电子显微镜或原子力显微镜才能观看。

保罗绘制DNA美洲地图所采用的方法大概如下:从M13噬菌体中提取DNA单链;然后,通过计算“裁”出短的DNA单链并着手人工合成;接着,将DNA单链与合成好的DN段混合,处理后得到一个个设计样式的DNA超级大分子,即最终的DNA图形。这项工作的前提是充分了解DNA单链折叠的动力学特征,操作中的关键步骤是通过计算机模拟计算获得上百条特异性的DNA序列。

目前,通过这种DNA“折纸术”已折叠了多种二维纳米结构,如DNA方形、DNA矩形、DNA五角星、DNA笑脸等。近来,采用类似的方法,上海交通大学生命科学研究中心和中国科学院上海应用物理研究所合作也构造出了纳米结构的“DNA中国地图”,相关研究结果已经正式发表在《科学通报》杂志英文版上。

DNA模板印刷

DNA是纳米技术中最常使用的建筑模块,通常被用来控制建造有序的纳米结构,DNA被认为有望成为自下而上制造微型电子线路的基本模块。现在,一组来自美国杨伯翰大学的科学家们正把DNA自组织技术同微制造印刷术结合起来,用来制造纳米通道等纳米结构。当然,这种印刷技术同样也可以被用来绘制纳米绘画作品。这项发现为目前光学印刷术所达不到的尺寸下的纳米加工开辟了新的途径。

该技术的发明者为沃利和贝塞利尔。这是一种利用DNA为模板来定义基底图案的方法。他们把DNA在基底上排列整齐,再在上面沉积一层金属膜。DNA分子起纳米蜡纸的作用,这样一来便在基底上定义了一些小于10纳米的图案。由于金属膜以一定角度沉积,DNA分子的投影定义了基底上的图案,因此,这种方法也被研究人员称为“DNA投影纳米印刷术”。接着,研究人员使用半导体工业中常用的等离子体对图案表面进行刻蚀,在基底上便可得到纳米尺寸的沟槽。如果这种沟槽拼出的图像设计得足够精巧,那么就会构成一幅上乘的纳米绘画作品。

DNA原子力显微镜拼图

原子力显微镜是一种利用原子、分子间的相互作用力来观察物体表面微观形貌的显微技术。它有一根纳米级的探针,被固定在一个极小的微悬臂上。当探针离样品非常近时,其顶端的原子与样品表面原子间的作用力就会使悬臂弯曲,偏离原来的位置。根据该偏离量,原子力显微镜就能间接地探测出样品的表面形貌或原子、分子。

现在,利用原子力显微镜不仅可以看到原子、分子,还可以搬动(操纵)原子、分子。由于DNA分子通常是链状的,因此,利用原子力显微镜探针在基体表面上“拨弄”DNA链,就能够形成各种各样的图线或图形。显然,这是一种纳米绘画创作的好思路。

纳米技术的研究范文篇7

关键词:纳米材料;纳米技术;动物疾病防控

中图分类号:S858文献标识码:B文章编号:1007-273X(2018)04-0012-02

当前国际动物疫病现状呈现复杂化,形势不容乐观。新兴复合型科技研究产物应用于动物疾病的诊断、治疗预防等环节迫在眉睫。纳米材料及技术由于具有新颖的物理、化学和生物学特性,已被研究应用于生命科学领域。纳米材料具有其独特的功能和优势,越来越多研究人员将纳米技术引入到动物疾病防控领域,如致病菌的快速检测、疾病的诊治等方面,并己取得了一定的效果。

1纳米材料及纳米技术研究概况

1.1纳米材料特点

纳米材料主要表现为表面与界面效应、小尺寸效应和宏观量子隧道效应等。实际应用效果包括表面积大、表面活性高、催化效率高、安全性稳定、吸附能力优良、低毒性等特点。

1.2纳米材料研究进展

纳米材料是纳米科学发展的重要基础,也是纳米科技最为重要的研究对象。纳米材料在生物医学中检测诊断、药物治疗以及健康预防方面均取得了一定的发展。军事医学院邱志刚[1]试验发现,水中的纳米氧化铝可以促使耐药基因从大肠杆菌转入沙门氏菌的效率提高200倍。即使以往很难发生耐药基因转移的不同种类细菌,在氧化铝纳米粒子的作用下耐药基因也发生了转移。由此可见,应用氧化铝纳米粒子大大加快了细菌获取耐药基因的速度。

1.3纳米技术

纳米技术是在纳米尺度下对物质进行制备、研究。在药物研究领域,由于纳米材料和纳米产品性质的特异性和优越性,用该技术建立新的药物控释系统可起到提高药物在体内的吸收效果、改善药物的输送、替代病毒载体、催化药物化学反应的作用。研究引入了微型领域,为寻找和开发新兽药、结合转基因技术用于动物试验研究[2],研制合成理想的药物提供强有力的技术支撑。

2纳米材料在动物疾病防治中的应用

随着生命科学、生物信息学等新兴复合型学科的迅速发展,纳米材料借助其特殊的结构效应在动物疾病防治领域展示出广阔的应用前景。医学起源于疾病诊断,对动物疾病没有很好的诊断就不可能有很好的预防和治疗。目前随着科技的发展,动物疾病诊断技术得到了前所未有的发展,各种检验诊断手段、仪器已是各式各样。利用纳米材料的特性去化验检测样品材料,可借助纳米材料极高的传感灵敏效应对疾病进行早期诊断,便于疾病防治。

2.1纳米分子信息成像和诊断

分子信息影像是生物医学和分子诊断学中的一门重要学科,可用于检测,考察机体内外组织中的分子细胞形态结构变化[3,4]。而纳米探针由于具有高亮、光学稳定、光谱吸收范围广等特点,可用于定量准确监测生物机体内部分子的理想工具,连接于小分子的肽、抗体以及核酸分子来进行疾病检测,靶向定位于目标细胞分子内部。Wu等[5]研究发现,基于量子点的肿瘤标记Her2的免疫荧光标记,比常规荧光染料标记不同的靶细胞表面受体、细胞骨架、核抗原和其他细胞器更有效。同时也发现了生物结合的胶体量子点在细胞标记、细胞示踪、DNA检测和体内成像方面很有价值。Gao等[6]进行了体内量子点成像和肿瘤定位的动物研究,观察到量子点在肝、脾、脑、心、肾和肺中的吸收、滞留和分布有逐渐减少的规律,在裸鼠前列腺癌异种移植瘤的研究中,量子点在瘤组织内特异性蓄积呈现出亮红色。

2.2纳米金及其检测技术

纳米金即指金的微小颗粒。其直径在1~100nm,具有高电子密度介电特性和催化作用。可与多种生物大分子结合,且不影响其生物活性。新型的纳米抗菌复合材料具有作为新的抗菌剂或者是抗菌包装材料的高效伤口敷料的可行性[7],可以用作高效的抗微生物制剂在生物应用中具有广阔的发展前景。纳米金PCR是基于常规PCR基础上,结合纳米技术而发展起的新型检测技术。刘阳等[8]根据副溶血弧菌(VP)的toxR基因序列,设计一对特异性引物,建立纳米金PCR检测方法,结果表明能扩增得到与试验设计相符的208bp(VP)的特异性条带,且与其他细菌无交叉反应。与普通PCR法进行比较,该方法检测灵敏度比普通PCR高10倍。而与传统的细菌分离鉴定法相比,纳米金PCR检测大大提高检测效率且具有灵敏度高、特异性强等优点。

2.3作为药物运输载体

和传统的注射或口服给药途径不同,运用纳米材料可定点靶向进行药物运输,对于药物剂量控制和疾病的预防及治疗具有重要意义。使用纳米材料运输药物可有效提升药物运输效率,降低毒性反应。越来越多的科研人员开始关注并构建用于药物输送的纳米载体,这些药物载体在肿瘤疾病的诊断治疗中具有广阔的前景。如Chen等[9]将pH敏感材料环糊精和低分子量的聚乙烯亚胺整合成纳米载体,并负载寡聚核酸,该载体可以有效地转染肺腺癌细胞,并对肿瘤生长有良好的抑制作用[10]。

3展望

纳米技术的研究范文篇8

【论文摘要】:讨论纳米科学和技术在新时期里发展所面对的困难和挑战。一系列新的方法将被讨论。我们还将讨论倘若这些困难能够被克服我们可能会有的收获。

纳米科学和技术所涉及的是具有尺寸在1-100纳米范围的结构的制备和表征。在这个领域的研究举世瞩目。无论是从基础研究(探索基于非经典效应的新物理现象)的观念出发,还是从应用(受因结构减少空间维度而带来的优点以及因应半导体器件特征尺寸持续减小而需要这两个方面的因素驱使)的角度来看,纳米结构都是令人极其感兴趣的。

1.纳米结构的制备

有两种制备纳米结构的基本方法:build-up和build-down。所谓build-up方法就是将已预制好的纳米部件(纳米团簇、纳米线以及纳米管)组装起来;而build-down方法就是将纳米结构直接地淀积在衬底上。前一种方法包含有三个基本步骤:1)纳米部件的制备;2)纳米部件的整理和筛选;3)纳米部件组装成器件(这可以包括不同的步骤如固定在衬底及电接触的淀积等等);“build-down”方法提供了杰出的材料纯度控制,而且它的制造机理与现代工业装置相匹配,换句话说,它是利用广泛已知的各种外延技术如分子束外延(mbe)、化学气相淀积(movcd)等来进行器件制造的传统方法。“build-down”方法的缺点是较高的成本。

很清楚纳米科学的首次浪潮发生在过去的十年中。在这段时期,研究者已经证明了纳米结构的许多崭新的性质。学者们更进一步征明可以用“build-down”或者“build-up”方法来进行纳米结构制造。这些成果向我们展示,如果纳米结构能够大量且廉价地被制造出来,我们必将收获更多的成果。

2.纳米结构尺寸、成份、位序以及密度的控制

为了充分发挥量子点的优势之处,我们必须能够控制量子点的位置、大小、成份已及密度。其中一个可行的方法是将量子点生长在已经预刻有图形的衬底上。由于量子点的横向尺寸要处在10-20纳米范围(或者更小才能避免高激发态子能级效应,如对于gan材料量子点的横向尺寸要小于8纳米)才能实现室温工作的光电子器件,在衬底上刻蚀如此小的图形是一项挑战性的技术难题。对于单电子晶体管来说,如果它们能在室温下工作,则要求量子点的直径要小至1-5纳米的范围。这些微小尺度要求已超过了传统光刻所能达到的精度极限。有几项技术可望用于如此的衬底图形制作。

⑴电子束光刻通常可以用来制作特征尺度小至50纳米的图形。如果特殊薄膜能够用作衬底来最小化电子散射问题,那特征尺寸小至2纳米的图形可以制作出来。

⑵聚焦离子束光刻是一种机制上类似于电子束光刻的技术。

⑶扫描微探针术可以用来划刻或者氧化衬底表面,甚至可以用来操纵单个原子和分子。最常用的方法是基于材料在探针作用下引入的高度局域化增强的氧化机制的。

⑷多孔膜作为淀积掩版的技术。多孔膜能用多种光刻术再加腐蚀来制备,它也可以用简单的阳极氧化方法来制备。

⑸倍塞(diblock)共聚物图形制作术是一种基于不同聚合物的混合物能够产生可控及可重复的相分离机制的技术。

⑹与倍塞共聚物图形制作术紧密相关的一项技术是纳米球珠光刻术。此项技术的基本思路是将在旋转涂敷的球珠膜中形成的图形转移到衬底上。

⑺将图形从母体版转移到衬底上的其他光刻技术。几种所谓“软光刻“方法,比如复制铸模法、微接触印刷法、溶剂辅助铸模法以及用硬模版浮雕法等已被探索开发。

3.纳米制造所面对的困难和挑战

随着器件持续微型化的趋势的发展,普通光刻技术的精度将很快达到它的由光的衍射定律以及材料物理性质所确定的基本物理极限。通过采用深紫外光和相移版,以及修正光学近邻干扰效应等措施,特征尺寸小至80nm的图形已能用普通光刻技术制备出。然而不大可能用普通光刻技术再进一步显著缩小尺寸。采用x光和euv的光刻技术仍在研发之中,可是发展这些技术遇到在光刻胶以及模版制备上的诸多困难。目前来看,虽然也有一些具挑战性的问题需要解决,特别是需要克服电子束散射以及相关联的近邻干扰效应问题,但投影式电子束光刻似乎是有希望的一种技术。扫描微探针技术提供了能分辨单个原子或分子的无可匹敌的精度,可是此项技术却有固有的慢速度,目前还不清楚通过给它加装阵列悬臂?拍芊袷顾?锏娇梢越邮艿目绦此俣取?p>

对一个理想的纳米刻写技术而言,它的运行和维修成本应该低,它应具备可靠地制备尺寸小但密度高的纳米结构的能力,还应有在非平面上刻制图形的能力以及制备三维结构的功能。此外,它也应能够做高速并行操作,而且引入的缺陷密度要低。然而时至今日,仍然没有任何一项能制作亚100nm图形的单项技术能同时满足上述所有条件。现在还难说是否上述技术中的一种或者它们的某种组合会取代传统的光刻技术。究竟是现有刻写技术的组合还是一种全新的技术会成为最终的纳米刻写技术还有待于观察。

4.展望

目前,已有不少纳米尺度图形刻制技术,它们仅有的短处要么是刻写速度慢要么是刻写复杂图形的能力有限。这些技术可以用来制造简单的纳米原型器件,这将能使我们研究这些器件的性质以及探讨优化器件结构以便进一步地改善它们的性能。必须发展新的表征技术,这不单是为了器件表征,也是为了能使我们拥有一个对器件制造过程中的必要工艺如版对准的能进行监控的手段。随着器件尺度的持续缩小,对制造技术的要求会更苛刻,理所当然地对评判方法的要求也变得更严格。随着光学有源区尺寸的缩小,崭新的光学现象很有可能被发现,这可能导致发明新的光电子器件。然而,不象电子工业发展那样需要寻找mos晶体管的替代品,光电子工业并没有如此的立时尖锐问题需要迫切解决。纳米探测器和纳米传感器是一个全新的领域,目前还难以预测它的进一步发展趋势。然而,基于对崭新诊断技术的预期需要,我们有理由相信这将是一个快速发展的领域。总括起来,在所有三个主要领域里应用纳米结构所要求的共同点是对纳米结构的尺寸、材料纯度、位序以及成份的精确控制。一旦这个问题能够解决,就会有大量的崭新器件诞生和被研究。

参考文献

[1]王淼,李振华,鲁阳,齐仲甫,李文铸.纳米材料应用技术的新进展[j].材料科学与工程,2000.

[2]吴晶.电喷雾法一步制备含键合相纳米微球的研究[d].天津大学,2006.

[3]张喜梅,陈玲,李琳,郭祀远.纳米材料制备研究现状及其发展方向[j].现代化工,2000.

纳米技术的研究范文篇9

纳米材料和纳米技术是20世纪后期出现的新型材料和高新技术。由于纳米材料的小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应,使它与常规材料相比具有独特的优异性能。随着纳米技术的迅速发展,各种类型纳米材料不断涌现,如纳米陶瓷粉末、纳米金属材料、纳米金属、纳米化合物、纳米生物材料等。在这些材料中纳米金属材料是重要的研究方向,在科研人员的不断探索中,纳米金属粉末的制备技术得到了不断革新和发展。许多纳米金属粉末作为新型抗菌材料(如抗病毒物质、抗菌材料、防污漆和抗真菌材料)的替代品被重点研究。纳米金属粉末也因其在冶金、催化和军事等领域中广泛的应用,成为研究人员的热点研究方向。

全书内容共分为12章:1.纳米金属颗粒的热力学数据的总体评价,从热力学背景知识出发,介绍纳米金属颗粒尺寸与材料性能的关系,并将实验和计算的熔解温度进行对比;2.单个纳米金属颗粒的数值模拟,包括分子动力学模拟、与尺寸相关的材料性质、两种纳米颗粒的烧结研究和纳米颗粒在氧气环境下的氧化研究以及具有核-壳结构的颗粒的加热和冷却等内容;3.放电爆炸下的纳米金属颗粒,主要介绍纳米金属的电爆炸丝生产技术;4.纳米金属粉末的电爆炸丝生产方法,包括如何用等离子技术对纳米颗粒进行再凝结、纳米铝粉的特征、纳米粉末的化学钝化、铝纳米颗粒的微胶囊化等内容;5.纳米金属颗粒团聚物的结构,包括表征团聚物结构的实验技术、力学稳定性、热稳定性、以及气体运输对反应速度的限速作用等内容;6.纳米金属粉末的钝化,包括理论和实验背景以及钝化纳米颗粒的特征;7.纳米金属粉末的安全,包括纳米颗粒在空气中氧化的基本现象、对静电放电的灵敏度、根据灾害分级对纳米粉末进行排序、包装要求等;8.铝粉末与液态水和水蒸气的反应,包括研究液态、气态水和铝粉末反应的实验技术和不同条件下的铝粉末的反应情况;9.基于硼烷氨和硼氢化钠的储氢系统的钴纳米催化剂,主要介绍物理化学方法;10.机械研磨对反应活性和亚稳态纳米材料的预处理;11.金属微粒燃烧的原位表征:非平衡诊断,包括固体材料的点火和燃烧、铝的反应机理、火焰管、火焰温度等内容;12.含能系统中的铝纳米粉末的表征和燃烧。

本书重点介绍纳米金属粉末的表征、氧化和燃烧、生产技术和安全知识。本书适合无机非金属材料工程、材料科学与工程、复合材料与工程、金属材料工程和纳米材料科学与技术等专业的研究生或相关领域的研究人员阅读和参考。

郭抒,博士生

(中国科学院理化技术研究所)

纳米技术的研究范文

“欢迎来太原采访,我希望通过你们的报道,在宣传好我们企业的同时,能引起国家有关部门对我们的科研成果,特别是应用于耐火材料的纳米技术给予重视与支持!”太原高科耐火材料有限公司(简称太原高科)董事长高树森与记者一见面就这样说。这位长期从事耐火材料研究开发工作的科研领军人和企业家,在记者的眼里更象是一位儒雅的长者,谈起纳米技术的发展,他向记者娓娓道来。

高树森告诉记者:纳米科技和纳米材料是20世纪80年代刚刚诞生并正在崛起的高新技术。它是研究包括从亚微米、纳米到团簇尺寸(从几个原子到几百个原子以上尺寸)之间的物质组成体系的运动相互作用以及可能的实际应用中的科学技术问题,研究内容还涉及现代科技的广阔领域。世界各国都对纳米技术给予了极大关注,美国、日本、德国等发达国家,都将纳米技术和纳米材料作为研究开发的热点课题,并得到政府的资金支持。随着科技发展进步,人类对纳米科技的研究日益广泛深入,纳米技术也已开始得到了较大范围的应用,并越来越深入地影响和改变着人们的生产、生活及思想,而对经济、政治及社会的影响,则更多地体现在各国间对纳米科技及其应用的激烈竞争上。具有特异功能的各种纳米材料越来越多,由纳米材料制备的功能性产品也不断地被开发出来,开始形成一个新型的纳米功能性产品的产业领域。在众多的纳米材料中,一些高性能的纳米陶瓷粉体材料,也就是广义上的无机非金属纳米材料的开发应用最为广泛和活跃,并已在多种产业和实际产品中得到应用,出现了高性能多功能性纳米产品,从而使得许多传统产业正在发生一场新的技术革命。随着纳米技术和纳米材料进入更多的传统产业和传统产品中,纳米科技将会给整个社会带来更大的经济和社会效益,并对人类社会的发展和进步产生深远地影响。

勇于探索创办高新技术企业及企业技术中心

高树森作为山西省耐火材料工程技术研究中心主任兼首席专家,中国节能协会玻璃窑炉专业委员会副主任委员,教授级高级工程师,耐火材料行业专家,长期从事耐火材料研究开发自主创新及使用研究工作,曾主持多项重点热工工程项目,研究开发自主创新多种耐火材料高新技术产品和特种功能性耐火材料,先后获全国科学大会奖,部级、省市级科学技术成果奖和新技术推广奖,并被授予全国冶金劳动模范,山西省、太原市劳动模范及先进科技工作者光荣称号。

太原高科耐火材料有限公司于1989年由高树森发起创立,1992年经山西省高新技术委员会认定、国家太原高新技术开发区管委会批准,成立了太原高科耐火材料有限公司。高树森和他领军的团队先后研究开发出多种耐火材料高新技术产品,并及时将研究成果转化为生产力,大大促进了企业的发展,为技术研究和自主创新提供了雄厚的资金支持,形成了生产与科研相互促进的良好局面。他们注重与国内有关院校及相关专业专家的联系与交流,以企业为主体的产、学、研体制的形成与建立,对企业的发展发挥了很好的作用。

在这之后,随着企业的不断发展,原有的生产能力远不能满足市场的需求。2005年,高树森毅然决定在太原市阳曲县投资8000余万元,建设了总占地面积为150多亩的现代化工厂和企业技术研发中心。该项目同时被列为山西省“1311”重点工程、高科技产业化项目以及山西重点引进关键科技开发项目。新工厂于2006年竣工投入生产,特种高效不定形耐火材料年生产能力为5.5万吨,新建的企业技术研究中心具有较先进完善的试验检验条件和设备仪器,技术中心还拥有一批经验丰富高素质的研究技术人员,具备研究开发自主创新和生产高新技术耐火材料产品的能力,该企业技术中心分别于2007年被山西省科技厅批准成为耐火材料行业工程技术研究中心,2009年被山西省认定为企业技术中心担负着耐火材料行业关键技术的研发和创新工作,并在自主创新方面取得了多项重大创新成果。

谈及此,高树森高兴地说:公司目前已通过了ISO9001-2000国际质量体系认证和ISO14001:2004环境管理体系认证,被山西省科委确定为“山西省科技先导型企业”、太原市科技局授予“太原市科技创新示范单位”、太原高新区“十佳技术创新项目企业”、“质量管理先进企业”等荣誉。最近,中国耐火材料行业协会授予太原高科耐火材料有限公司、山西省耐火材料工程技术研究中心“行业纳米耐火材料产业化示范基地”的称号。

通过多年的努力,高树森和他领导的企业已走出了自主研发、自主创新、自主生产科研成果的路子,由“中国制造”变为“中国创造”,而且实际效益十分突出,在这次金融危机的冲击下,该企业也受到一定程度的影响,但在高董事长的带领下克服重重困难,企业产值利润仍得到了较大增长,并且由于纳米科技、纳米材料开发成功和应用企业潜在产值利润发展空间十分广阔。实践证明,坚持科学发展观,走自主研发和自主创新的道路是太原高科发展的根本。

自主创新开辟纳米耐火材料新天地

纳米科技和纳米材料是20世纪80年代末期刚刚诞生并正在崛起的高新技术,是21世纪最富有活力的高新技术,对各个领域将产生深远影响的高新技术,其研究内容涉及现代科技的广阔领域,世界各国都对纳米技术和纳米材料给予了极大关注,具有特异功能的各种纳米材料越来越多,由纳米材料制备的功能性产品也不断地开发出来,开始形成一个新型的纳米功能产品的产业领域,从而使得许多传统产业正在发生一场新的技术革命。

记者得知,自2008年至今,在将近两年的时间里,作为技术发明人,高树森共申报了纳米复合氧化物陶瓷结合铝-尖晶石耐火浇注料及其制备方法等六项纳米耐火材料发明专利项目,其中五项发明专利均已公布,并经有关部门严格筛选后评定,被列为年度国家重点发明专利项目,还被国家知识产权局出版社编入发明人年鉴中,前两项发明专利获第九届香港国际发明博览会金奖,又获第十二届中国北京国际科技产业博览会第三届中国自主创新杰出贡献奖。2010年这些纳米发明专利在第十三届中国北京国际科技产业博览会上再一次获“中国自主创新杰出贡献奖”。

高树森向记者强调:纳米耐火材料系列发明专利的公布,是纳米技术和纳米材料在耐火材料领域中成功应用的重要标志,也是纳米技术和纳米材料与传统产业中自主研发、自主创新的重要发展方向,对钢铁等高温工业的发展和高新技术的应用作出了重要贡献。随着纳米材料和纳米技术进入更多的传统产业和传统产品中,纳米科技将会给整个社会带来更大的经济和社会效益,对人类社会产生深远影响,同时发展纳米科技是转变经济发展方式,实现可持续发展的关键。

建言献策实行“纳米中国耐材”战略计划

随着纳米技术的研究与发展,使其具有特异功能的各种纳米材料的制备成为现实与可能,作为纳米技术基础的纳米材料率先得到发展与应用,由纳米材料制备的功能性产品,也不断地开发出来,开始形成一个新型的纳米功能性产品的产业领域。在纳米耐火材料的研发和创新中,在将近两年的时间里,高树森和他的团队情系科研,矢志不渝,先后发明了纳米复合氧化物陶瓷结合铝-尖晶石、纳米Al2O3薄膜包裹的碳-铝尖晶石、纳米Al2O3、MgO复合陶瓷结合尖晶石-镁质、纳米Al2O3、MgO薄膜包裹的碳-尖晶石镁质、纳米Al2O3、SiC薄膜包裹碳的Al2O3-MA-SiC-C质、纳米SiO2、CaO复合陶瓷结合硅质耐火浇注料及其制备方法六项纳米耐火材料专利项目,并且在纳米耐火材料产业化进程中也取得了很大进展,为我国纳米耐火材料工业发展作出了重要贡献。

自主创新与研究开发是现代企业生存与发展之本。作为业界的资深人士,高树森向我们阐述了实行“纳米中国耐材”战略计划,这就是催生新型经济社会发展模式,就是要在高新技术产业化大潮中占据有利先机,需要从技术创新、产业创新、产业集群耦合3个维度,探索原创技术产业催生机制、技术创新扩散机制和高新技术与传统产业的融合机制,实现知识产业集群、原创产业集群和以新技术武装的传统产业集群之间耦合与升级,将国家纳米技术建设成为国家原创产业的试验基地,高端制造业、技术、产业创新的典范。

高树森认为:在纳米材料领域进行深入研究,对于我国经济转型、经济的平稳快速发展,特别是对于提升传统产业来说意义重大。纳米材料只有真正用于工业生产才能彰显价值,推动产业升级改造。纳米材料的产业化目前面临着如下瓶颈:一是降低纳米材料的制备成本;二是发展大规模生产纳米材料的分散技术问题;三是发展纳米材料应用技术问题,以制取分散性好、组织结构均匀并能形成纳米结构基质的新型高效纳米耐火浇注料。

纳米技术的研究范文篇11

作为一种几何尺度的量度单位,一纳米等于十亿分之一米,千分之一微米,大约是三四个原子的宽度。人们在研究物质构成的过程中发现,在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性并通过物理或化学方法制造出具有特定功能产品的科学技术,就称之为纳米技术。一般来说,纳米技术所制造物体的体积不超过数百个纳米,其宽度相当于几十个原子聚集在一起的宽度。由此可见,纳米技术是在现代物理学与先进工程技术相结合的基础上诞生的,是一门基础研究与应用探索紧密联系、学科之间交叉性很强的新型综合科学技术。

在现代科学技术快速发展的今天,纳米科技成果已经在现代科技的多个学科领域得以广泛渗透和发展,其中就包括与人们日常生活密切相关的日用化学工业领域。我们知道,化妆品作为一种特殊日用化工产品,由各种原料或添加剂经过合理配方加工而成。因此,化妆品学也通常被认为是一门交叉性很强的综合学科,其主要涉及物理、化学、生物、生理、化工工艺、化工工程机械、医药卫生、材料等多种学科。因此,在化妆品产品的研发和生产过程中,将纳米技术科研成果转化并应用到新的化妆品产品中,能从根本上大大提高化妆品的性能、科技含量及市场竞争力。正因为如此,纳米技术有望在未来的化妆品产业中得到广泛的应用。

一、纳米科技与化妆品纳米化

1.纳米科技与纳米级功能材料

目前,纳米科学的研究主要集中在纳米材料领域,取得的成果也多在此。因此,作为纳米科技的基石,纳米材料和纳米结构是当今新兴材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近转化为应用的重要组成部分。

在过去的十几年里,广大科技工作者在纳米材料的制备、性质、表征乃至应用方面进行了系统和规范性研究,尤其在功能材料方面做了大量的基础研究工作。所谓功能材料主要是指基于物质的光、电、磁等功能开发的材料。研究发现,纳米级功能材料主要可产生小尺寸效应、量子化尺寸、宏观量子隧道效应以及表面效应。这些功能都是与物质的电子层结构和能级密切相关的。当物质的粒径下降至纳米级时,由于此时物质的粒径与电子的德布罗意波长接近,因此量子化效应、小尺寸效应等对物质的能级和电子跃迁的影响骤然增加,从而影响了材料性能。

2.纳米材料与化妆品纳米化

一般认为,化妆品对皮肤的清洁、护肤、营养和保护作用主要取决于通过渗透或吸收进入皮肤中的各种功效成分,而传统工艺所生产的各种活性成分却往往难以充分发挥作用。我们知道,化妆品的各种性能及质量除了与配方、生产设备和工艺密切相关外,关键取决于化妆品中功效成分的粒子大小。功效成分的粒子越小,就越容易透过皮肤角质层而到达皮肤深层,起到应有的护肤和疗肤效果,反之,即便是很好的配方也不能对皮肤产生应有的护理和保养作用。基于此,化妆品的研制者一直致力于化妆品功效添加剂粒子细小化的工作,这一点与纳米技术点的发展是不谋而合。结合纳米生物学、纳米材料学等学科优势将各种化妆品材料/原料纳米化的技术,即为化妆品纳米化技术。利用纳米化技术可使各种纳米级化妆品功效成分颗粒能够顺利渗透到皮肤深层,并通过其产生的表面效应和尺寸效应最大限度地发挥护肤、疗肤效果。目前,对纳米化妆品的研制,第一步是要突破微米级(100~300nm),第二步就是进入国际上所公认的纳米尺度(1~100nm)范围内。

化妆品功效成分纳米化后,对人体皮肤所产生的两个主要效应为表面效应和尺寸效应。(1)表面效应:众所周知,球形粒子的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比,随着粒子直径变小,比表面积将会增大,说明表面原子所占的百分数将会显著地增加;同时由于处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同而使得表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易与其它原子相结合而稳定下来,故具有很大的化学活性和反应特性,晶体微粒化使这种活性表面原子增多,其表面能大大增加,这样就使得化妆品中功效成分的粒子能充分发挥其功效。如:能够充分抑制酪氨酸酶的活性,分解和阻断黑色素的形成和上浮的通过,达到使人体肌肤白皙的目的;能够充分与病原体接触,达到抑菌和杀菌的作用效果;能够充分散射和吸收紫外线,达到防晒的目的。(2)尺寸效应:人体皮肤随年龄的增长及环境条件的不同而有不同程度的变化,如:真皮中的胶原蛋白减少、分子变硬,致使皮肤逐渐失去弹性和韧性,出现皱纹,皮肤抵抗力、免疫力和排除废物的能力下降,从而出现和加深了各种色素斑点等。因此要在化妆品中加入一些功效成分,对皮肤的生理结构、细胞组成成分及新陈代谢进行修复、保养和调整,使皮肤焕发出青春活力。皮肤的渗透和吸收作用与物质粒子的大小密切相关。随着化妆品功效成分纳米化程度的提高,皮肤组织对功效成分的渗透和吸收就会变得更加快捷和深入,从而能够对深层皮肤起到深层清洁护理、抑菌杀菌、促进细胞新陈代谢、补充营养和水分等作用,达到增强肌肤弹性和表面张力的目的,并使人体肌肤最终能得到更加完美的呵护和保养,更加健康美丽。

二、纳米技术在化妆品中的应用

1.在化妆品添加剂经皮给药中的应用

化妆品纳米化技术的一个方向是发展化妆品原料纳米微粒技术,即将功效成分包裹在直径纳米尺度的微粒中。载药纳米微粒作为纳米技术与现代药学结合的产物之一,具有许多作用:容易被组织或细胞吸收,恒速缓释功效成分并确保功效成分在较长时间维持在有效浓度内,以及增加有效成分稳定性,减少特殊添加剂对皮肤的刺激等,因此,载药纳米微粒已成为化妆品活性成分的理想载体和新剂型,在化妆品添加剂经皮给药及控释和缓释方面初显奇效。纳米微粒主要包括纳米微胶囊和纳米微球。微胶囊是指用聚合物薄膜将微量固体、液体或气体物质包裹制成微小囊状物,厚壁仅为10nm。微胶囊可有效防止各种有效成分间的相互干扰,控制添加剂的释放速度。纳米微球为一种多孔的微粒载体,直径为纳米级。纳米微球由于多孔而使球体表面积增加,从而具有更强的吸附能力,可运载更多的有效成分,同时也具有缓释和定向释放的效应。目前,应用上述两种新型载体的多种化妆品已在国外成功上市,市场前景已被业内人士看好。

2.在化妆品乳化技术中的应用

乳化技术是膏霜和乳液类化妆品制备的重要技术。传统乳化工艺制备的化妆品膏体其内部结构一般为胶团状或胶束状,直径通常为微米级,对皮肤渗透能力很弱,不易通过表皮和皮肤附属腺体两条主要途径被皮肤所吸收。通过纳米乳化技术所制备的化妆品,其膏体微粒直径可达到纳米级。这种化妆品在皮肤各层的渗透性可以明显增加,而皮肤的选择性吸收物质的利用率随之大为提高。目前,市场上销售的此类护肤品在美白、抗衰老等功效方面效果更好。另外,由于此类护肤品不含或少含表面活性剂,因此,尤其适用于敏感皮肤消费者。

3.在防晒产品中的应用

防晒化妆品中防晒剂的选择对防晒产品功能具有决定性作用,是防晒化妆品配方的核心所在。目前,国内传统防晒产品中,常用的防晒剂主要为化学防晒剂(有机防晒剂)和物理防晒剂(无机防晒剂),其中以化学防晒剂为多。化学防晒剂品种多,效果好,但光稳定性相对较差;物理防晒剂光稳定性好,但使用时含量不宜过高。因此,在最大限度地追求防晒剂的安全性、高效、广谱和降低成本方面,对无机材料防晒剂的研究和开发以及多种防晒剂复合使用的研究一直是该领域的研究热点。最近几年,应用纳米技术开发生产的多种无机防晒剂在化妆品中的应用已经初显良好的应用前景。纳米无机材料在防晒化妆品中应用,可有效解决化学防晒剂的缺点,提高物理防晒剂的防晒效果。目前,这些防晒剂中研究和应用最多的是纳米TiO2,其次为纳米ZnO和SiOx。其他一些金属氧化物的纳米粒子如Fe2O3,Cr2O3,尽管也具有紫外吸收性质,但是由于毒性或过深的颜色,限制了他们在化妆品中的使用。纳米TiO2作为紫外吸收剂有其独特的长处。首先,纳米TiO2在UVA和UVB波段都表现出吸收,是广谱紫外吸收剂。其次,除了能够吸收紫外线,它还可以在一定程度上散射紫外线,这是传统的有机紫外吸收剂所不具备的特点。纳米ZnO也具有类似特点,但吸收峰主要在UVA波段。在美国,FDA已经批准TiO2和ZnO为化妆品的原料,而日本甚至要求防晒化妆品中必须加入纳米TiO2。目前,国内外以纳米TiO2和纳米ZnO为原料的防晒化妆品已经面市。

4.在天然药物化妆品中的应用

近年来,随着人们对回归自然需求的增加,天然药物化妆品以其独特的功效和副作用少而在市场上倍受青睐。然而,大多数中药添加剂有效成分存在分子量大和溶解度差所导致的吸收差利用率低等问题。为了提高药物的吸收率,利用纳米技术直接将难溶解的中草药纳米化,制备成化妆品添加剂,可有效增加中药添加剂有效成分溶解速率和接触面积,可使皮肤对天然药物成分的吸收更加顺利,从而使天然药物药效得以充分发挥。

“纳米中药”是我国科研工作者首先提出的研究方向。徐辉碧教授等人在对雄黄进行纳米化处理后,发现其对肿瘤细胞S180和上皮细胞ECV-304的细胞毒性和细胞凋亡作用呈现明显的尺寸效应。纳米石决明在对血清微量元素的药效上也表现出类似作用。这些研究充分体现了中药的纳米化对其效果提高的影响。采用纳米化的人参、灵芝、黄芪等代替相应提取物,在很大程度上提高了药物的吸收率和利用率,同时在一定意义上达到了延长药效的效果。因为纳米化的中药吸收很快,但是释放却不像提取物那样迅速,是相对缓慢的释放过程。这对功能性化妆品具有重要意义。如人参、芦荟、灵芝和黄芪等经纳米化后添加到化妆品中,其产品功效可明显提高。因此,中药添加剂有效成分纳米化技术在天然药物化妆品中的应用具有非常重要的意义。

5.在化妆品包装材料中的应用

纳米化材料可广泛应用于化妆品包装材料中,其中应用最为广泛的是纳米塑料。纳米塑料的特点是具有耐高温、耐磨、外观好(透明度和光泽度)、重量轻,而且质地坚硬等良好的物理性状;同时,纳米塑料还有耐化学腐蚀、耐老化、不生锈和无毒等特点;此外,纳米塑料还有物理祛臭和抗菌作用。因此,纳米塑料在化妆品行业中将会有广阔的应用前景。

三、展望

纳米技术的研究范文

1982年,Boutonmt首先报道了应用微乳液制备出了纳米颗粒:用水合胼或者氢气还原在W/O型微乳液水核中的贵金属盐,得到了单分散的Pt,Pd,Ru,Ir金属颗粒(3~nm)。从此以后,不断有文献报道用微乳液合成各种纳米粒子。本文从纳米粒子制备的角度出发,论述了微乳反应器的原理、形成与结构,并对微乳液在纳米材料制备领域中的应用状况进行了阐述。

1微乳反应器原理

在微乳体系中,用来制备纳米粒子的一般是W/O型体系,该体系一般由有机溶剂、水溶液。活性剂、助表面活性剂4个组分组成。常用的有机溶剂多为C6~C8直链烃或环烷烃;表面活性剂一般有AOT[2一乙基己基]磺基琥珀酸钠]。AOS、SDS(十二烷基硫酸钠)、SDBS(十六烷基磺酸钠)阴离子表面活性剂、CTAB(十六烷基三甲基溴化铵)阳离子表面活性剂、TritonX(聚氧乙烯醚类)非离子表面活性剂等;助表面活性剂一般为中等碳链C5~C8的脂肪酸。

W/O型微乳液中的水核中可以看作微型反应器(Microreactor)或称为纳米反应器,反应器的水核半径与体系中水和表面活性剂的浓度及种类有直接关系,若令W=[H2O/[表面活性剂],则由微乳法制备的纳米粒子的尺寸将会受到W的影响。利用微胶束反应器制备纳米粒子时,粒子形成一般有三种情况(可见图1、2、3所示)。

(l)将2个分别增溶有反应物A、B的微乳液混合,此时由于胶团颗粒间的碰撞,发生了水核内物质的相互交换或物质传递,引起核内的化学反应。由于水核半径是固定的,不同水核内的晶核或粒子之间的物质交换不能实现,所以水核内粒子尺寸得到了控制,例如由硝酸银和氯化钠反应制备氯化钠纳粒。

(2)一种反应物在增溶的水核内,另一种以水溶液形式(例如水含肼和硼氢化钠水溶液)与前者混合。水相内反应物穿过微乳液界面膜进入水核内与另一反应物作用产生晶核并生长,产物粒子的最终粒径是由水核尺寸决定的。例如,铁,镍,锌纳米粒子的制备就是采用此种体系。

(3)一种反应物在增溶的水核内,另一种为气体(如O2、NH3,CO2),将气体通入液相中,充分混合使两者发生反应而制备纳米颗粒,例如,Matson等用超临界流体一反胶团方法在AOT一丙烷一H2O体系中制备用Al(OH)3胶体粒子时,采用快速注入干燥氨气方法得到球形均分散的超细Al(OH)3粒子,在实际应用当中,可根据反应特点选用相应的模式。

2微乳反应器的形成及结构

和普通乳状液相比,尽管在分散类型方面微乳液和普通乳状液有相似之处,即有O/W型和W/O型,其中W/O型可以作为纳米粒子制备的反应器。但是微乳液是一种热力学稳定的体系,它的形成是自发的,不需要外界提供能量。正是由于微乳液的形成技术要求不高,并且液滴粒度可控,实验装置简单且操作容易,所以微乳反应器作为一种新的超细颗粒的制备方法得到更多的研究和应用。

2.1微乳液的形成机理

Schulman和Prince等提出瞬时负界面张力形成机理。该机理认为:油/水界面张力在表面活性剂存在下将大大降低,一般为l~10mN/m,但这只能形成普通乳状液。要想形成微乳液必须加入助表面活性剂,由于产生混合吸附,油/水界面张力迅速降低达10-3~10-5mN/m,甚至瞬时负界面张力Y<0。但是负界面张力是不存在的,所以体系将自发扩张界面,表面活性剂和助表面活性剂吸附在油/水界面上,直至界面张力恢复为零或微小的正值,这种瞬时产生的负界面张力使体系形成了微乳液。若是发生微乳液滴的聚结,那么总的界面面积将会缩小,复又产生瞬时界面张力,从而对抗微乳液滴的聚结。对于多组分来讲,体系的Gibbs公式可表示为:

--dγ=∑Гidui=∑ГiRTdlnCi

(式中γ为油/水界面张力,Гi为i组分在界面的吸附量,ui为I组分的化学位,Ci为i组分在体相中的浓度)

上式表明,如果向体系中加入一种能吸附于界面的组分(Г>0),一般中等碳链的醇具有这一性质,那么体系中液滴的表面张力进一步下降,甚至出现负界面张力现象,从而得到稳定的微乳液。不过在实际应用中,对一些双链离子型表面活性剂如AOT和非离子表面活性剂则例外,它们在无需加入助表面活性剂的情况下也能形成稳定的微乳体系,这和它们的特殊结构有关。转贴于

2.2微乳液的结构

RObbins,MitChell和Ninham从双亲物聚集体的分子的几何排列角度考虑,提出了界面膜中排列的几何排列理论模型,成功地解释了界面膜的优先弯曲和微乳液的结构问题。

目前,有关微乳体系结构和性质的研究方法获得了较大的发展,较早采用的有光散射、双折射、电导法、沉降法、离心沉降和粘度测量法等;较新的有小角中子散射和X射线散射、电子显微镜法。正电子湮灭、静态和动态荧光探针法、NMR、ESR(电子自旅共振)、超声吸附和电子双折射等。

3微乳反应器的应用——纳米颗粒材料的制备

3.1纳米催化材料的制备

利用W/O型微乳体系可以制备多相反应催化剂,Kishida。等报道了用该方法制备

Rh/SiO2和Rh/ZrO2载体催化剂的新方法。采用NP-5/环已烷/氯化铑微乳体系,非离子表面活性剂NP-5的浓度为0.5mol/L,氯化铑在溶液中浓度为0.37mol/L,水相体积分数为0.11。25℃时向体系中加入还原剂水含肼并加入稀氨水,然后加入正丁基醇锆的环乙烷溶液,强烈搅拌加热到40℃而生成淡黄色沉淀,离心分离和乙醇洗涤,80℃干燥并在500℃的灼烧3h,450℃下用氧气还原2h,催化剂命名为“ME”。通过性能检测,该催化剂活性远比采用浸渍法制得的高。

3.2无机化合物纳粒的制备

利用W/O型微乳体系也可以制备无机化合物,卤化银在照像底片乳胶中应用非常重要,尤其是纳米级卤化银粒子。用水一AOT一烷烃微乳体系合成了AgCl和AgBr纳米粒子,AOT浓度为0.15mol/L,第一个微乳体系中硝酸银为0.4mol/L,第二个微乳体系中NaCl或NaBr为0.4mol/L,混合两微乳液并搅拌,反应生成AgCl或AgBr纳米颗粒。

又以制备CaCO3为例,微乳体系中含Ca(OH)2,向体系中通入CO2气体,CO2溶入微乳液并扩散,胶束中发生反应生成CaCO3颗粒,产物粒径为80~100nm。

3.3聚合物纳粒的制备

利用W/O型微乳体系可以制备有机聚丙烯酸胺纳粒。在20mlAOTt——正己烷溶液中加入0.1mlN-N一亚甲基双丙烯酰胺(2mg/rnl)和丙烯酰胺(8mg/ml)的混合物,加入过硫酸铵作为引发剂,在氮气保护下聚合,所得产物单分散性较好。

3.4金属单质和合金的制备

利用W/O型微乳体系可以制备金属单质和合金,例如在AOT-H2O-n—heptane体系中,一种反相微胶束中含有0.lmol/LNiCl2,另一反相微胶束中含有0.2mol/LNaBH4,混合搅拌,产物经分离、干燥并在300℃惰性气体保护下结晶可得镍纳米颗粒。在某微乳体系中含有0.0564mol/L,FeC12和0.2mol/LNiCl2,另一体系中含有0.513mol/LNaBH4溶液,混合两微乳体系进行反应,产物经庚烷、丙酮洗涤,可以得到Fe-Ni合金微粒(r=30nm)。

3.5磁性氧化物颗粒的制备

利用W/O型微乳体系可以制备氧化物纳米粒子,例如在AOT-H2O-n-heptane体系中,一种乳液中含有0.15mol/LFeCl2和0.3mol/LFeCl3,另一体系中含有NH4OH,混合两种微乳液充分反应,产物经离心,用庚烷、丙酮洗涤并干燥,可以得到Fe3O4纳粒(r=4nm)。

3.6高温超导体的制备

利用W/O型微乳体系可以合成超导体,例如在水一CTAB一正丁醇一辛烷微乳体系中,一个含有机钇、钡和铜的硝酸盐的水溶液,三者之比为1:2:3;另一个含有草酸铵溶液作为水相,混合两微乳液,产物经分离,洗涤,干燥并在820℃灼烧2h,可以得到Y-Ba-Cu—O超导体,该超导体的Tc为93K。另外在阴离子表面活性剂IgegalCO-430微乳体系中,混合Bi、Pb、Sr、Ca和Cu的盐及草酸盐溶液,最终可以制得Bi-Pb-Sr-Ca-Cu—O超导体,经DC磁化率测定,可知超导转化温度为Tc=112K,和其它方法制备的超导体相比,它们显示了更为优越的性能。

目前对纳米颗粒材料的研究方法比较多,较直接的方法有电镜观测(SEM、TEM、STEM、STM等);间接的方法有电子、X一射线衍射法(XRD),中子衍射,光谱方法有EXAFS,NEXAFS,SEX-AFS,ESR,NMR,红外光谱,拉曼光谱,紫外一可见分光光度法(UV-VIS),荧光光谱及正电子湮没,动态激光光散射(DLS)等。

  • 下一篇:城市土壤改良方法范例(12篇)
    上一篇:学校管理员的工作计划(整理13篇)
    相关文章
    1. 云计算网络安全培训范例(12篇)

      云计算网络安全培训范文篇1  一、深入学习政治理论,不断提高政治素养  一年多来,我认真学习党的十七大精神和两会精神、南网方略、南网和公司工作会精神..

      daniel 0 2024-04-08 02:17:57

    2. 云计算概述范例(12篇)

      云计算概述范文篇11.云计算并不是虚拟化将云计算等同于虚拟化,是最常见的误解,所以这点还是值得声明一下:虚拟服务并不能构建一个云。云计算超越虚拟化解决方案,它有自动配置、..

      daniel 0 2024-04-08 02:16:13

    3. 科技创新发展史范例(12篇)

      科技创新发展史范文篇1论文摘要:“李约瑟难题”,质询中国近代科技为什么落后;“钱学森之问”,质问为什么学校培养不出杰出人才。回答“李约瑟难题”和“钱学森之问”,需要从研究..

      daniel 0 2024-04-08 01:45:16

    4. 高分子材料的主要性能范例(12篇)

      高分子材料的主要性能范文篇1关键词:高分子材料抗静电技术通常情况下,两种不同的物质表面接触的时候就会形成电荷的迁移。在理论上来说,静电是普遍存在的,我们通过高分子材料一..

      daniel 0 2024-04-08 01:44:13

    5. s技术论文范例(3篇)

      3s技术论文范文篇1Abstract:inthispaper,the"3S"technology(GPS,RS,GIS)alsoexpounded,the3Sintegrationtechnologyanditsprospectsareintroduced,andwith3Stechniquetorel..

      daniel 0 2024-04-08 01:13:10

    6. 审计风险与检查风险的关系范例(12

      审计风险与检查风险的关系范文关键词审计风险防备一、审计风险1.含义审计风险是指会计报表存在严重错报或漏报,而注册会计师审计后发表不恰当审计意见的可能性,包括固有风险..

      daniel 0 2024-04-08 01:12:13

    7. 对数控机床的了解范例(12篇)

      对数控机床的了解范文篇1关键词:数控仿真;职业教育;实践教学;评教结合中图分类号:G642.0文献标志码:A文章编号:1674-9324(2016)16-0174-02数控加工技术产生于20世纪中期,该技术最早可..

      daniel 0 2024-04-07 22:33:32

    8. 对数控机床的意见和建议范例(3篇)

      对数控机床的意见和建议范文篇1一、2015年工作总结(一)依法行政,强化准入管理认真贯彻《医疗机构管理条例》、《医疗机构管理条例实施细则》、《云南省医疗机构管理条例》、《..

      daniel 0 2024-04-07 22:32:13