遥感技术在农业方面的应用范例(3篇)
遥感技术在农业方面的应用范文篇1
关键词:无人机;光学遥感技术;土壤湿度;节约用水
一、我国的干旱状况及干旱预警机制
(一)我国干旱现状
我国是一个严重干旱缺水的农业大国。很多省份的人均水资源量低于500立方米。我国人均水资源占有量在世界银行统计的153个国家中仅排第88位。水资源分布也很不平衡,长江流域及其以南地区,面积只占全国的36.5%,但水资源量却占全国的81%;其以北地区,面积占全国的63.5%,但水资源量仅占19%,所以水资源短缺是我国面临的严峻问题。并且我国的农业生产几乎全部依靠灌溉,因此发展安全节约高效的精准农业是我国农业发展的一个目标。
(二)我国干旱预警机制
我国干旱预警主要是通过国家各级人民政府抗旱防汛指挥部负责管理。依据国家的相关法律法规、农牧业、水利、气象等部门向同级人民政府递交干旱监测、预测预警决策信息,政府部门根据干旱灾害的严重程度启动不同的预警应急预案,不同部门之间开展的常规干旱监测、预警评估业务信息,供内部业务使用或通过授权的媒体上。所以我们一般得到的天气及干旱情况是比较笼统的大范围的天气状况。但是现在的精准农业上的需要的则是应比较详细的、精准的。同时由于地理环境以及土壤环境的差异即使在同一块土地中不同部分的土壤含水量也会出现差异,更重要的是我国的地理环境比较复杂,想要准确的监测土壤湿度就更难了。
二、无人机在旱情监测上的应用
通过发展安全高效节约的精准化农业是农业现代化的重要标志,也是我国发展农业的一个目标。无人机已经成为一种新型的信息获取途径,在农业现代化的建设进程中,其在精准农业发展中占有的地位会越来越重要,尤其是在农业旱情监测以及农业灌溉上的应用。
(一)无人机遥感技术
传统遥感技术一般采用卫星和大型飞机作为遥感平台,进行大面积观测并获得丰富的综合性数据。但是,传统遥感在小时空尺度的数据采集分析上存在分辨率不足的问题。如果采用小型无人机作为低成本的新型遥感平台,就很好的弥补了传统遥感的缺陷,在局部遥感和应急监测方面会取得巨大的成功。
无人机遥感技术要求搭载的仪器所占空间小、重量轻、抗震性优良。光学遥感技术具有所占空间小、时间短、成像简单、费用少等一系列优点。无人机通过搭载有合成的多功能探测器,以近红外光作为遥感测量的手段,采集多波段光谱数据,依靠地面的操作站对无人机实施操控。
(二)土壤湿度监测与土地灌溉
土壤的含水量是农作物生长的重要指标,农作物的生长都有适宜的土壤湿度范围,在现代的农业生产中我们往往需要及时的了解大面积农田的土壤湿度。传统的土壤水分测量方法有:种子散射法、重力土壤采样法、张力计法、土壤蒸渗法和土壤电阻法。但是这些方法采样时间长且是点数据,不能满足大面积空间、长期的土壤湿度动态要求,没有显著的代表性。微波遥感技术就可以很好解决这些问题,微波遥感监测土壤水分的基础是土壤的介电特性与水分含量间的密切关系,因为土壤的介电常数受水的影响很大。无人机通过搭载遥感设备,对收集到的土壤反射回的微波图像数据进行综合分析,和建立的模型进行对比得到具体的土壤湿度含量,并且可以对图像模糊的区域通过自动或人工对无人机实时进行任务设定、航线调整进行重新的观测。可以更加全面的对土壤进行监测,然后将再次传回的数据与图像进行数据处理分析,得到更加具体的土壤湿度。
农业灌溉是农业生产中最基本的问题,作为下一个严重缺水的国家,发展现代农业是我国农业建设的首要任务。节水灌溉技术在广义上是指相对于传统灌溉技术更加能节约、高效用水的灌溉方法,措施和制度的总称。狭义上是指以现代农业作为前提,根据地域性和作物生长规律的不同,以实现农业产量最高和生态效益最好为目标而进行的水资源开发和灌溉技术的总称。
合理高效的农田灌溉,是保证作物生长和节约用水的基本准则。现代农业中常采用的节水灌溉技术有沟灌、喷灌、滴灌等技术。我们通过得到的不同的土壤湿度对灌溉进行合理的安排,这样既能保证作物产量又能达到节约用水的目的。
三、结语
现代农业的快速发展对农业航空的需求日益增长,决定了农用无人机必定成为农业生产操作的主要力量之一。随着无人机遥感技术的不断发展及其在农业上的应用,为现代的精准化农业的发展提供了更为有利的技术支持,其不仅可以应用在土壤湿度的监测和农业灌溉上,还可以应用在其他农业的信息采集上,对农业生产进行实时监测,从而将农业生产的风险降到最低,保证农业产量,加快推进我国的农业精准化建设。
参考文献:
[1]高占义.中国的灌溉发展及其作用[J].水利经济,2006,24(1):36-39.
[2]朱平.区域水资源预警方法研究[D].扬州大学,2007.
[3]于宝珠.旱情风险评价模型及其预警机制的研究[D].东北农业大学,2012.
遥感技术在农业方面的应用范文
1全球定位系统全球定位系统(GPS,GlobalPositioningSystem)是由地球导航卫星、地面监控系统和用户GPS接收机等3个主要部分组成。现在最常用的是美国GPs系统,它包括在离地球约20O00km高空近似圆形轨道上运行的24颗地球导航卫星,其轨道参数和时钟由设于世界各大洲的5个地面监测站与设于其本土的一个地面控制站进行监测和控制,使得在近地旷野的GPS接收机在昼夜任何时间、任何气象条件下最少能接受到4颗以上卫星的信号。通过测量每一卫星发出的信号到达接收机的传输时间,即可计算出接收机所在的地理空间位置。
农田养分信息具有显着的空间属性,其空间变异性很大。在数据采集过程中,其位置的识别是与数据监测密不可分的,因此需要对信息进行准确的定位。
全球定位系统(GPS)提供了全天候、实时精确定位的测量手段。数字农业中,GPS主要是用来确定在田间的位置,结合其土壤的含水量、氮、磷、钾、有机质和病虫害等不同信息的分布情况,辅助农业生产中的灌溉、施肥、喷药等田间操作,其作用从本质来说是提供三维位置和时间。GPS主要应用于以下3个方面:一是智能化农业机械的动态定位(即根据管理信息系统发出的指令,实施田间的精准定位);二是农业信息采集样点定位(即在农田设置的数据采集点、自动或人工数据采集点和环境监测点均需GPS定位数据);三是遥感信息GPS定位(即对遥感信息中的特征点用GPS采集定位数据,以便于GIS配套应用)。由于GPS存在较大的误差,所以差分GPS(即DGPS)越来越受到人们的重视。DGPS可以消除卫星钟差、星历误差、电离层和对流层延迟误差等,从而使定位精度大幅度提高。
2遥感技术遥感技术(RS,RemoteSensing)的基本原理是利用物体的电磁波特性,通过观测物体的电磁波,从而识别物体及其存在的环境条件。遥感技术系统由传感器、遥感平台及遥感信息的接受和处理系统组成。
其中,接受从目标反射或辐射的装置叫做遥感器(如扫描仪、雷达、摄影机、摄像机和辐射计等),装载遥感器的平台称遥感平台(如飞机和人造卫星等)。经过遥感器得到的数据在使用前应根据用途需要做相应的纠正、增强、变换、滤波和分类等处理。
遥感(RS)技术是未来数字农业技术体系中获得田间数据的重要来源,它可以提供大量的田间时空变化信息。遥感技术在精准农业中的应用主要以下3个方面:一是作物长势及其背景的监测,运用高分辨率(米级分辨率)传感器,在不同的作物生长期实施全面监测,并根据光谱信息进行空间定性和定位分析,为定位处方农作提供依据;二是作物冠层多光谱监测,利用地物光谱仪和多光谱相机获取的信息,监测叶绿素密度的变化,并分析其变化与养分的关系;三是运用多光谱遥感信息(红外波段),在有作物条件下监测土壤水分。
3田间信息获取技术的现状和发展趋势3.1土壤水分和养分信息获取技术国内外已开始研究采用各种不同的手段来获取土壤水分和养分信息。目前,除了一些传统的常规测量方法外,已尝试采用的较新的技术,包括遥感、计算机及网络和地面传感技术等。其中,实践较多的是以电子技术为支撑的地面信息传感技术和以空间技术为支撑的遥感信息采集技术。
土壤水分信息的获取相对于其他土壤养分更易掌握,因此对土壤水分测量方法的研究已经取得了显着成果。各种在线式的测量方法相继产生,如电阻法、时域反射法(TDR法)、频域反射法(FDR法)、中子散射法和近红外光谱法等。这些方法均有一定的局限性:一是电阻法的测量精度受土壤含水率的影响很大;二是时域反射法在低频(≤20MHz)工作时较易受到土壤盐度、粘粒和容重的影响,而且价格比较高;三是频域反射法的读数强烈地受到电极附近土体孔隙和水分的影响,特别是对于使用套管的FDR测量;四是中子散射法虽然测量方法简单,但仪器设备昂贵,并且存在潜在的辐射危害。对于土壤养分信息(土壤中的N,P,K,pH值、有机质、含盐量和电导率)的获取技术,常规化学试验测量方法仍是现在土壤养分信息获取的主要手段。该方法具有破坏性和不及时性等缺陷,因此随着近红外光谱技术的不断完善和应用的广泛性,用近红外光谱技术来检测土壤养分已经成为国内外学者研究的重点。
近红外光谱法是根据水的红外吸收光谱来进行测量的,在红外区内,水的吸收波长为1200,l450,1940和2950nm,测量方式有反射式、透射式和反射透射复合式等几种。红外光谱水分仪具有无接触、快速、连续测量、测量范围大、准确度高和稳定性好等优点,适用于在线水分监测,但在测量自然物体时因表面不规则使得反射率不稳定,影响测量精度,需对样本做简单处理。
土壤其他养分信息的研究主要包括土壤中N,P,K,pH值、有机质、含盐量和电导率等信息的采集。现在,除了常规化学试验测量方法外,用近红外反射光谱法来测量土壤养分已成为国内外诸多学者研究的重点。Shibusawa等指出,用400~1900nm波段来预测土壤湿度、pH值、土壤电导率和土壤有机质等,其相关系数从0.19变化到0.87;李民赞研究了基于可见光光谱分析的土壤参数分析,在11O0,1350,1398,2210nm处建立了多元线性回归模型,相关系数为0.934;健等用近红外光谱法分析了土壤中的有机质和氮素;He等对土壤电导率和常量元素的测量;鲍一丹等应用光谱技术研究了土壤粒度和含水量对预测土壤氮含量的影响。
3.2作物长势的监测技术对农作物长势的动态监测可以及时了解农作物的生长状况、土壤墒情、肥力及植物营养状况,以便及时采取各种管理措施,保证农作物的正常生长。同时,可以及时掌握大风或降水等天气现象对农作物生长的影响,监测自然灾害或病虫害对作物产量造成的损失等,为农业政策的制订和粮食贸易提供决策依据。
应用遥感技术可对大面积农作物的长势进行监测,其基本方法是利用覆盖周期短而面积大的NOAA卫星资料,对地面植被吸收的光谱信息和地面实际情况进行分析,并结合常规的方法和资料,建立作物监测模式,用以监测作物长势,苗情监测通报,指导农业生产¨。国际上,关于农作物生长状况遥感监测与估产有3个标志性的实验计划,即美国的LACIE计划、A—GRISTARS计划和欧盟的MARS计划。1974—1977年,美国农业部(USDA)、国家海洋大气管理局(NOAA)、美国宇航局(NASA)和商业部合作主持了“大面积农作物估产实验”,主要品种是小麦,地区范围是美国、加拿大和前苏联。1980—1986年,执行LACIE计划的几个部门又合作开展了“农业和资源的空间遥感调查计划”,其中包括世界多种农作物长势评估和产量预报。欧盟所属的联合研究中心遥感
应用研究所通过实施“遥感农业监测”项目,即MARS计划,也成功地建成了欧盟区的农作物估产系统,并将结果应用于诸如农业补贴与农民申报核查等欧盟的共同农业政策。在农作物长势监测的方法上,国外科学家主要围绕适合大面积监测的NOAA—AVHRR的应用进行了多方面的探索,取得了许多突破进展¨卜”J。我国利用气象卫星监测作物生长状况的研究始于20世纪80年代中期,并应用气象卫星对农作物长势进行宏观监测的理论和方法进行了研究。
3.2.1作物根系信息监测技术作物根系信息基本上是通过图像识别的方法来得到的。例如加拿大产的ET一100根系生态监测系统,运用透明管材埋设在需要研究的根系周围,使用特殊图像捕捉系统对根系照相,然后借助专业根系分析系统对混合图像进行分析,从而跟踪了解其生长过程。
这种方法可以非破坏性地动态追踪分析根系形态因子,根系相关数据能够定量化,还可以根据用户需求监测土壤水分状况,从而研究根系所在区域内溶质运移及水分胁迫所引起的生理变化。该方法已广泛应用于园艺植物培养和作物生长模型研究等领域。
3.2.2光合作用测定技术光合作用测定的一个例子是用叶室内装备最新的小型红外气体分析传感器(IRGA),测量温度和光合有效辐射(PAR)的传感器接收信号,再用便携式微处理器控制叶室内的二氧化碳和水蒸汽浓度,并测量二氧化碳和水蒸汽交换。CIRAS一1植物光合测定仪根据精密测量叶片表面CO浓度及水分的变化情况,来考察叶片与植物光合作用相关的参数,用以测量植物叶片的光合速率、蒸腾速率和气孑L导度等与植物光合作用相关的参数。
3.3作物营养监测技术叶绿素是吸收光能的物质,对作物的光能利用有直接影响。叶绿素含量和作物的光合能力、发育阶段以及氮素状况有较好的相关性。由于叶绿素之间的含氮量和叶变化趋势相似,通常认为可以通过测定叶绿素来监测植株氮素营养。
叶绿素的常规测定使用分光光度计法,因为这种方法要进行组织提取和分光光度计的测定,所以既耗时间又对植被造成损伤。另外,从大田到实验室的运输和样本制备过程中很可能损失叶绿素,进而导致叶绿素含量发生变化。
目前,应用较多的是一种日本生产的SPAD一502叶绿素仪。这种叶绿素仪的工作原理是采用两个不同波长的光源分别照射植物叶片表面,通过比较穿过叶片的透射光光密度差异而得出SPAD值。因此,SPAD值是一个无量纲的比值,与叶片中的叶绿素含量成正相关。在叶绿素仪应用的研究中,各研究者所采用的测定部位都大体相同,即作物生长前期取新展开的第一片完全展开叶作为测定部位,生长后期则取功能叶(小麦取旗叶和玉米取穗位叶)作为测定部位。
叶绿素仪在玉米株与株之间的测定值可能会相差15%,在同一片叶上不同位置的测定值也不同。一般认为,距离叶基部55%处的SPAD测定值较大,且偏差较小,是合适的测试位点。
便携式高光谱仪是一种非损伤性测定叶绿素的方法,它通过测定绿色植物叶片的反射率、透射率和吸收率来测定叶绿素含量,这决定了高光谱技术在植被叶绿素含量评价研究中具有不可替代的作用。国内外很多学者已经对作物氮元素的高光谱及光谱测量进行了研究,并且各种反射率比值及植被指数用于监测植物的氮素亏缺1卜。王人潮等利用叶绿素计和高光谱快速测定了大麦的营养状况,结果表明,可以通过光谱法来测定大麦的氮素水平¨;IJi等应用反射光谱检测了茶叶的叶绿素含量;方慧等应用光谱技术检测了油菜叶片中叶绿素含量¨。光谱监测提供了一种自动、快速和非损伤性的植物营养状态监测方法,并且田问不同处理之间的冠层光谱差异为高光谱和多光谱遥感大面积监测氮素营养提供了可行性。
3.4作物冠层多光谱监测技术植物冠层光谱特性是植物光谱特性与背景土壤光谱特性的综合。随着植物冠层的发育,土壤光谱特性的作用逐渐下降;在植物衰老时,土壤背景的作用又逐渐增大。一般叶面积指数(LAI)达到3左右时,冠层在可见光和中红外波段的光谱反射率基本稳定;而在近红外波段,LAI达到5~6时,光谱反射率才能饱和。冠层光谱反射率还受太阳光入射角、双向反射、气溶胶和风速等诸多外部因素的影响。由于植物营养状况能影响叶面积、冠层形态和内在生理特征,而且不同营养元素的影响程度也不同,因此利用冠层光谱分析可以诊断植物营养状况。现代”精细农业”的一个非常重要的技术手段,就是利用遥感技术监测作物的营养状况与长势。与叶片光谱特性一样,氮素营养对冠层光谱特性影响的研究最为系统和深入。
随着氮素营养水平的提高,光谱反射率在可见光和中红外波段降低,而在近红外波段却增加。诊断水稻冠层氮素营养水平的敏感波段为760~900nm,630~690nm和520~550nm。不同氮素营养水平下的冠层光谱反射率存在着明显差异,经植被指数转换后差异更为显着与稳定。因此,利用冠层光谱测试可以区分作物的氮素营养水平。
植物中磷钾营养水平与冠层光谱特性的关系研究较少见。总的来说,磷钾对光谱特性的影响不如氮明显。在水培和砂培条件下,不同磷钾水平的植物冠层光谱反射率存在显着差异,磷钾营养对冠层光谱特性的影响与氮的影响相似。随着磷钾营养水平的提高,可见光波段的光谱反射率下降,而在近红外波段却有明显增加。利用光谱分析,可区分3~5级的磷钾营养水平。在田间条件下,由于磷钾的缺乏不严重,有时结果不太一致。
还未见报导。由于它们对叶面积、生物量以及叶片叶绿素等生理生化性质的影响与大量元素具有相似性,预计中量及微量元素对冠层光谱特征的影响也具有相似性,但影响程度将会差异较大。
目前,在国外应用的一种田间便携式分光仪可以方便地检测作物的冠层反射系数。用数学方法将几个波长下得到的反射系数进行合并就可以得到作物的“光谱系数”,或称之为探测值。经过优化的光谱系数在作物的拔节期和抽穗期与作物的供氮状况密切相关。利用这种分光仪探测原理,并加以改进而研制的拖拉机机载探测施肥系统已经很成熟。它通过探测系统将作物冠层信息输入计算机,经处理得出作物的需肥情况,计算机通过协调拖拉机步进速度和DGPS(差分GPS)数据,在考虑探测器间距离和施肥区范围基础上控制施肥操作。
作物冠层反射和土壤背景辐射在红外胶片上为不同的辐射显影。照片经计算机处理后,每个像素的色度变化都可以表示出作物反射光线的情况,而作物反射光线特性的变化正是作物营养变化,特别是氮营养状况发生变化的结果。这样分析作物冠层照片就可以准确地分析作物的氮营养状况。Hansen等用高光谱反射分别对小麦的冠层生物量和氮含量进行了研究;Daughtry等通过叶片和冠层反射率来预测玉米叶片的叶绿素含量;冯雷等应用多光谱技术检测了油菜叶片中叶绿素含量J。
3.5作物病虫害诊断及杂草识别技术病虫害是影响农作物产量和品质提高的重要因子,及时、准确与有效地检测病虫害的发生时间和发生程度是采取治理措施的基础。
目前,用雷达监测飞性昆虫、孢子捕捉器监测一些作物病原菌、性信息素诱芯或诱饵监测田间鳞翅目害虫以及灯光诱集飞行趋光性昆虫等,都是利用有害生物的习性开发出的相对省工和省时的监测手段。
随着遥感和高光谱技术的广泛应用,用光谱和遥感技术来监测作物病虫害的研究也取得了一定的进展。
北京农业信息技术研究中心采用高光谱遥感监测小麦条锈病、白粉病和蚜虫,以达到大面积、快速、无破坏的病虫害监测和预测预报的目的。美国利用卫星遥感图片分析监测森林舞毒蛾扩散及危害程度,监测草地蝗虫危害等。中国科学院利用综合航空多光谱数字相机成像系统,监测蝗虫及主要棉花害虫。中科院还利用TM图像遥感监测东亚飞蝗的栖息地芦苇的植被指数和监测蝗灾的动态变化。北京农林科学院利用TM卫星图片监测麦蚜对冬小麦的危害。吴迪等应用光谱和多光谱技术对茄子和番茄的灰霉病进行了早期诊断识别-27]。
随着人们环境保护意识的提高和对农药残留物的重视,对田间杂草清除的研究也逐渐受到许多学者的重视。杂草一作物区分的研究可分为3种:一是人工区分;二是航空遥感技术;三是光学传感器。人工区分目前是区分作物和土壤背景的最佳方法,但既费时又费力;航空图片虽然可以在短时间内获得作物大范围的图像,但是研究表明杂草密度对图像的可视性有严重的影响;基于地面多光谱传感器的研究使得对单种作物一杂草的研究有了进一步的进展。。。
遥感技术在农业方面的应用范文
1.1概况
地理信息系统的优势在于可以利用与计算机网络技术紧密相关的数据库或者网络图形处理等技术,对所采集到的信息进行整合和分析,从而为决策者提供有效的可视化信息支持。地理信息系统具备数据采集、编辑、变更,数据统计和分析、产品的二次加工等功能。依托这些功能,地理信息系统可以广泛地应用于国民经济的各个行业,为各个产业的发展提供信息资源。
1.2在农业资源管理中的应用
地理信息系统是一种计算机软件平台,能够对空间的地理信息进行数据的保存及分析,能够为农业生产提供精细化的数据平台,包括土地的管理、土壤所含的物质成分、自然水文地质条件、农作物品种和种类以及病虫害的类型等,通过这些数据准备地分析农作物生长过程中需要的自然环境和水土条件,可以为农作物的差异性和实施调控提供必要的支持。地理信息系统已广泛应用于农业生产的各个领域,其作用于农业生产中的分析方法也促进了更多网络技术在农业中发挥重要的作用。
1.3辅助农业资源调查
农业发展是我国实现健康可持续发展的必要条件。通过地理信息系统对农业资源进行调研分析,使得数据库中现有的地图与属性进行有机结合,为农业的现代化管理带来了极大的便利。农业资源的估算可以利用空间分析模型来进行,这种手段使人们能够更清晰地了解农业资源的变化情况。
1.4在农业灾害控制中的应用
利用地理信息系统对农业生产过程中可能产生的灾害进行风险预警和评估,为决策部门提供及时有效和准确可靠的信息,使灾害的防治具有充分的科学依据,这样才能保证农村经济的稳步发展。地理信息系统具有比较完备的属性信息,对区域内农作物灾害发生的基本规律、危害程度等进行综合评价和模拟,并对灾害发展趋势进行预测,为防灾减灾提供决策依据。
2遥感技术在农业生产中的应用
2.1遥感技术概况
所谓遥感技术,就是通过物体自身的电磁波特性识别物体及其存在的环境条件的一种先进的技术。与传统观测技术相比,遥感具有可以实现大面积的同步观测以及短期内的重复观测,遥感技术还能够实现对既有物体的24h全方位高精度观测。
2.2遥感技术在精细技术中的应用
遥感技术能够详细、客观及快速地为作物生态环境和作物的生长提供各种信息,是精细农业获取农业信息数据的重要来源。遥感技术在精细化农业生产中主要应用于以下几个方面。
2.2.1对农作物的生产状况进行监测
通过对农作物在不同生长阶段的时间序列图像进行遥感观测,农田管理者利用该技术能够捕捉到的信息,及时发现农作物在生长的各个阶段出现的病虫害,从而采取有效的预防措施。还能够利用不同时间序列的遥感图像,了解不同阶段农作物的长势,提前预测农作物的产量。
2.2.2作物生态环境监测
利用遥感技术可以对土壤侵蚀面积、土壤盐碱化面积及其主要分布区域、土壤盐碱化变化趋势等进行监测,也可以对土壤、水和其他作物生态环境进行监测,这些信息有助于田间管理者采取相应的措施。
2.2.3灾害损失评估
气候异常对作物生长具有一定的影响,利用遥感技术可以监测与定量评估作物受灾程度,对作物损失进行评估,然后针对具体受灾情况,实施补种、浇水、施肥或排水等抗灾措施。
3结语
-
幼儿的健康知识范例(12篇)
幼儿的健康知识范文篇1关键字:心理健康一日活动环境教育一、幼儿健康教育1.健康的定义。人体各器官系统发育良好、功能正常、体质强壮、精力充沛并具良好劳动效能的状态。..
-
水产养殖企业经营管理范例(12篇)
水产养殖企业经营管理范文篇1饲料产业发展的调查报告围绕xxxx养殖业的发展对饲料生产和食品安全的要求,省民营企业发展协会联合省饲料协会、省饲料工作办公室对我省的饲料产..
-
证券市场的性质范例(12篇)
证券市场的性质范文篇1(一)我国证券市场已初步形成并将继续形成一个比较完善的市场体系.随着改革的不断向前推进,我国证券市场的规范化建设将会在原来的基础上迈上一个新台阶..
-
逻辑学与思维方法训练范例(3篇)
逻辑学与思维方法训练范文【关键词】初中数学学生逻辑思维能力培养方法【中图分类号】G633.6【文献标识码】A【文章编号】2095-3089(2016)09-0119-01思维是创造人类文明与科..
-
老年人护理方法范例(12篇)
老年人护理方法范文篇1关键词:老年护理人员;激励机制;综合素质一、提出问题根据上海市统计局公布的数据,上海市2008年从事社会福利行业的人员,国有单位的职工平均年收入为4..
-
节约集约用地情况范例(12篇)
节约集约用地情况范文篇1一、总体情况当前我市在土地利用方面的当务之急是向节约集约用地方向转变,进一步盘活存量土地,挖掘存量土地的潜力,我市出台了《###市国有土地收储运营管..
-
美丽乡村村庄规划范例(12篇)
美丽乡村村庄规划范文篇1为深入学习了解就如何实施好乡村振兴战略提出的“五个振兴”要求,即产业振兴、人才振兴、文化振兴、生态振兴、组织振兴,全面贯彻落实上级领导的指示..
-
智慧医疗的关键技术范例(12篇)
智慧医疗的关键技术范文1篇1在胡奎看来,智慧城市就是要让人们的工作和生活更便利,更舒适;在智慧城市的建设热潮中,应该回归理性思考,不能“”;真正的智慧城市是有地方特色的,要..