纳米复合材料范例(3篇)
纳米复合材料范文
稀土材料;永磁材料;Nd-Fe-B;纳米复合永磁材料
[中图分类号]O482.54[文献标识码]A[文章编号]1009-9646(2011)08-0073-02
一、稀土永磁材料的发展概况
稀土永磁材料是将钐、钕混合稀土金属与过渡金属(如钴、铁等)组成的合金,用粉末冶金方法压型烧结,经磁场充磁后制得的一种磁性材料,通常称为稀土金属间化合物永磁,简称稀土永磁。它是20世纪60年代出现的新型金属永磁材料,其发展至今已经历了第一代SmCo5系(1:5型),第二代Sm2Co17系以及第三代Nd-Fe-B系稀土永磁材料。由于前两代稀土永磁材料都含有地壳中的微量元素“钐”和战略储备物资“Co”且其中钐钴磁体的磁能积在15~30MGOe之间,尽管其磁性能较优异,但含有储量稀少的稀土金属“钐”和稀缺昂贵的战略金属“钴”,因此,它的发展及应用推广都受到了很大的局限。为了摆脱钐、钴的束缚,降低磁体的成本,人们将研究的焦点转向成本低廉的稀土-铁基磁体的上,因而Nd-Fe-B系永磁体应运而生,其的磁能积在27~50MGOe之间,比钐钴磁铁更高,被称为“永磁王”,是目前磁性最高的永磁材料。迈向了开发稀土-铁基磁体的新时代。1972年Clark等人首次发现将TbFe2化合物制成非晶态并退火后,其矫顽力可大大提高。由此得到一个启示――非晶体材料的晶化是有效的磁硬化手段。日本Sagawa等人宣称,日本住友公司已采用传统设备SmCo5的工艺研制出了Nd-Fe-B稀土永磁材料,其磁性能(BH)m=289.7kJ/m3。同年11月肯定了其组成为Nd-Fe-B。至此标志着具有划时代意义的第三代稀土永磁材料Nd-Fe-B的诞生。
Nd-Fe-B材料虽具有高的综合磁性能,但它的居里温度低且易腐蚀。因此自上世纪90年代初,人们又在原有的Sm-Co系和Nd-Fe-B系永磁材料的基础上,通过引入具有高饱和磁化强度的软磁相,开发了一类全新的稀土永磁材料―纳米晶复合永磁材料。经过十余年的研究,获得了Nd2Fe14B/-Fe、Nd2Fe14B/Fe3B、Sm2Fe17N/-Fe、SmCo5/-Fe、Sm2Fe17/-Fe等系列的纳米复合永磁材料。稀土永磁材料是现在已知的综合性能最高的一种永磁材料,它比十九世纪使用的磁钢的磁性能高100多倍,比铁氧体、铝镍钴性能优越得多,比昂贵的铂钴合金的磁性能还高一倍。
二、Nd-Fe-B系纳米复合永磁材料的研究进展
由于软磁材料具有较高的饱和磁化强度和极低的矫顽力,而硬磁材料则与之相反,将高饱和磁化强度的软磁相与高磁晶各向异性的稀土金属间化合物硬磁相复合起来,将有可能用硬磁相来提供高的矫顽力,而用软磁相来提供高的饱和磁化强度,从而可得到高性能的永磁材料。
纳米晶复合永磁材料中的剩磁增强现象是1988年荷兰的Philips研究室Coehoorn及其合作者在低Nd合金中首先发现的,他用熔体快淬法制备出了Nd4Fe77.5B18.5非晶薄带,经晶化热处理后得到的各向同性磁粉的Mr>0.5Ms。进一步的研究表明,这是由于该合金中纳米级的软磁相Fe3B晶粒和硬磁相Nd2Fe14B晶粒之间的强烈的交换耦合作用,出现了高剩磁和高磁能积现象,并呈现单一铁磁性相特征。此类合金被称为纳米晶双相复合永磁合金,兼有硬磁相的高磁晶各向异性和软磁相的高饱和磁化强度的优点。
纳米复合永磁材料是由具有纳米尺寸晶粒的硬磁相和软硬相的交换耦合作用复合而成,这种材料通过交换耦合作用实现矫顽力高的硬磁相与剩磁高的软磁相间的磁耦合,从而提高材料的整体磁性能。与传统的永磁合金相比,纳米复合永磁合金具有以下特点:
(1)基体相可以是软磁相也可以是硬磁相,两相的数量可以连续的过渡,两相均高度弥散地均匀分布,彼此在纳米级范围内复合;
(2)两相(或第二相)颗粒尺寸达到纳米级大小,两相的界面在晶体学上是共格的;不存在界面相,两相的界面处存在磁交换耦合作用;
(3)虽然两相的磁晶各向异性常数相差极大,但在磁交换耦合作用下,当有外磁场作用时,软磁相的磁矩要随硬磁相的磁矩同步转动,磁体的磁化与反磁化具有单一铁磁性特征,剩磁状态下软磁性相的磁矩将停留在硬磁性相磁矩的平均方向上,因此各向同性的永磁具有剩磁增强效应;
(4)稀土含量比较低,因而原材料成本低,且由于稀土元素含量减少,而使合金具有较好的抗氧化性和耐腐蚀性;具有较好的温度稳定性。
Nd-Fe-B系纳米晶双相复合磁体从相组成来划分可分为3种:
(1)以硬磁相Nd2Fe14B为基体,另外有少量软磁相-Fe,即Nd2Fel4B/-Fe型;
(2)以软磁相Fe3B为基体,另外有少量硬磁相Nd2Fe14B,即Fe3B/Nd2Fe14B型;
(3)以软磁相-Fe为基体,另有少量硬磁相Nd2Fe14B,即-Fe/Nd2Fe14B型。
上述三类材料中,Fe3B/Nd2Fe14B型和-Fe/Nd2Fe14B型纳米晶双相复合永磁合金均是以软磁相为基体的,硬磁相弥散分布于其中。这两类合金由于硬磁相的含量较少,因此具有较高的剩磁并且成本较低,但是矫顽力不高,这就限制了它们的适用范围。而Nd2Fel4B/-Fe型永磁合金中,细小均匀的-Fe晶粒均匀弥散于硬磁相Nd2Fel4B基体上,磁化与反磁化过程具有单一的硬磁性相的特征,软磁性相的特征已消失,因此具有较高的矫顽力,剩磁增强效应比较明显,综合性能最好,是现阶段研究的热点。
三、展望
我国稀土永磁行业的发展始于上世纪60年代末,当时的主导产品是钐-钴永磁,目前钐-钴永磁体世界销售量为630吨,我国为90.5吨(包括SmCo磁粉),主要用于军工技术。随着计算机、通讯等产业的发展,稀土永磁特别是NdFeB永磁产业得到了飞速发展。目前中国已经真正地成为全球最大的稀土永磁生产基地,同时也是非常的潜在稀土永磁应用市场。由于我国丰富的稀土资源,较低的人工成本和广阔的市场,从而国外的钕铁硼制造业逐步向中国转移的态势势不可挡,中国必将成为世界一流的稀土永磁材料供应基地。国外先进的钕铁硼永磁材料制造商进入中国,会对中国稀土永磁企业带来挑战,因此我国要继续加强新型稀土磁性材料的探索、加强高档稀土磁性材料的开发,便我国稀土磁性材料能保持持续发展。
[1]廖恒成,马立群,袁浩扬.永磁材料未来十年研究展望[J].稀有金属材料与工程.
[2]胡伯平.稀土永磁.材料及其应用.
[3]涂铭旌,刘颖,朱达川.纳米稀土材料的研究进展.
纳米复合材料范文
关键词:机械合金化;铝基复合材料;纳米尺度
中图分类号:TB383.1文献标识码:A文章编号:1006-8937(2015)26-0072-02
1概述
铝基复合材料具有高比强度和比模量、低热膨胀系数、良好的尺寸稳定性、较高的高温机械性能以及抗疲劳、耐磨损等优良性能。与钢相比,铝基复合材料的密度仅为钢的三分之一,耐磨性则与铸铁相当;与铝合金相比,导热率与其基本相当,抗拉和抗压强度及弹性模量大幅提高,热膨胀系数有较大幅度的降低。
因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一,在航空航天、汽车、电子和光学仪器、体育用品等领域得到了广泛了应用。
基于进一步提高铝基复合材料机械性能的需求,研究发现,减小增强体颗粒尺寸会增加铝基复合材料的塑性、韧性和强度,因而越来越多小尺寸(约1μm或更小)的增强体被用来制备铝基复合材料。纳米复合材料被定义为在多相固体材料中,其中一个相(一般为增强体)至少有一个方向其尺寸小于100nm。在纳米铝基复合材料的制备中,纳米颗粒的特性给使用液相法的制备工艺带了困难,因而固相法更多的被采用,其中最常见的为机械合金化法。
机械合金化(MA)是一种固态粉加工技术,涉及了粉末在高能球磨机中的冷焊、破碎和再冷焊的过程。
在此过程中,一定量的混合粉末装入容器中并放入研磨介质,然后在预定的时间长度内进行高速搅拌。当粉末中含有塑韧性良好的金属材料时,在球磨过程中需要加工过程控制剂(PCA)来避免其因过度冷焊而结块。在球磨结束后,可得到合金化且混合均匀的粉末。
本文以Al2O3、Al3Ti和CNTs为代表增强体,概述了机械合金化制备相应纳米铝基复合材料的研究进展。
2AlCAl2O3纳米复合材料
纳米复合材料具有两种不同的制备方法。在第一种方法中,氧化铝增强体通过原位化学反应生成,被称为原位复合材料。在第二种方法中,Al2O3颗粒直接加入铝中,再将混合物一起球磨,以产生纳米复合材料。
一般情况下,原位生成复合材料的界面结合更强,机械性能比非原位生成复合材料要好,但在纳米尺度下性能差异几乎不存在。
2.1原位法
在原位制备Al-Al2O3纳米复合材料过程中,最常用的原位反应方程式有:
2Al+3CuO3Cu+Al2O3
2Al+3ZnO3Zn+Al2O3
Xi等人研究了Al含量从20%~85%(wt.)范围内,Al和氧化铜的反应球磨。研究表明,当Al含量仅为20%(wt.),发生完全还原反应,反应产物为铜和均匀分散的氧化铝颗粒分散。但是,随着Al含量的增加,会形成铝-铜金属间化合物,如Cu9Al4,CuAl2和Al(铜)固溶体。
同时,细小而分散的氧化铝颗粒进入到了Al基体内。Wu等人研究结果表明球磨铝和10Wt.%的氧化铜17h后,Al4Cu9相衍射峰开始出现在X射线衍射图上,并且此析出物经过退火后转化为CuAl2相。
增强相的体积分数过大会造成混合粉末的压制困难。当氧化铜含量降低至5Wt.%,增强体包括析出的大小为100~500nmCuAl2和10~50nm的氧化物和碳化物颗粒,Al基体的尺寸大约74nm。依照晶粒尺寸(Hall-Petch)和Orowan强化机制分析了复合材料的强度,表明Hall-Petch强化来源于细晶铝、Orowan强化源于纳米尺度的氧化物和碳化物颗粒。
Durai等人通过球磨铝,氧化铜和ZnO的混合物,球磨后的粉末经过冷压以及高温烧结,制备了Al-Al2O3纳米复合材料。
研究表明,该复合材料中细小的氧化铝颗粒弥散分布在Al(Zn)或Al(Zn)-4Cu的基体中。该材料在经过测试后发现耐磨损性得到改良,相比于未经过球磨直接进行冷压和烧结的复合材料具有更高的硬度和耐磨性。
2.2非原位法
Prabhu等人球磨了铝-氧化铝混合粉末,选用不同尺寸(50nm、150nm和5μm)和体积分数(5、10、20、30和50)的Al2O3。混合粉末在行星式球磨机中经过不同时间的球磨,结果表明,当球磨时间超过20h以后氧化铝增强体能均匀分散到铝基体中。Al-20Vol.%50Al2O3在不同球磨时间后的SEM照片,如图1(a)(b)(c)(d)所示。
不同体积分数的Al-50Al2O3在球磨20h后的X射线能谱元素分布图,如图2所示。通过照片可观察到球磨20h后,氧化铝增强体实现了均匀分布。
3AlCAl3Ti纳米复合材料
相比于其他大多数富铝金属间化合物,Al3Ti因为它具有熔点高(约1623K)、相对低的密度(3.4g/cm3)和较高弹性模量(216GPA)。另外,由于Ti在铝中的低扩散性和溶解度,Al3Ti在高温下会展现出低的粗化速率。因此,Al3Ti存在于Al基体中下可以非常有效地提高铝基复合材料的刚度,室温机械性能和改善的铝基复合材料热稳定性。
Lerf和莫里斯用机械合金化法以铝粉和钛粉为原材料合成了Al-Al3Ti复合材料。球磨后能观察到两金属元素均匀分布,再对混合粉末在873K进行退火后,有Al3Ti金属间化合物产生。0.1~0.5μmAl3Ti颗粒分布于Al基体上,同时因为在球磨过程中加入PCA,纳米尺度(50nm)Al4C3和γ-Al2O3的球状颗粒也存在于铝基体中。Wang和Kao用机械合金化法和高温烧结合成了Al-Al3Ti复合材料,复合材料微观结构表现为平均尺寸约100nm的等轴颗粒状Al3Ti弥散分布在铝基体中,同时在晶粒内和晶界上还存在着纳米尺度的Al2O3和Al4C3颗粒。而且还对Al3Ti含量不同的Al-Al3Ti复合材料的高温变形行为进行了研究。
4AlCCNTs纳米复合材料
碳纳米管因其优异的机械性能使其成为理想的复合材料增强体,在增强材料的刚度和强度同时并实现轻量化。然而碳纳米管固有的物理性质,使其有强烈的团聚倾向,最终造成材料性能不升反降的现象。机械合金化法能较好地解决碳纳米管团聚现象,从而最大程度的发挥其作用。
Morsi和Esawi通过机械合金化法制备了Al-MWCNTs(2~5wt.%)纳米复合材料,并对碳纳米管的分布和铝晶粒尺寸进行了研究,结果表明,球磨能够避免碳纳米管在复合材料中的团聚;在球磨48h的样品中能观察单个的碳纳米管到嵌入在铝基体中;球磨过程中冷焊和破碎的共同作用,细化了铝基体的晶粒。
George等人用球磨合成的Al-CNT(单壁和多壁)复合材料,为了保持CNT的完整性,球磨时间较短,复合粉末再经过冷压、烧结和热挤压。通过测试材料的屈服强度、拉伸强度和弹性模量,结果表明,复合材料具有比基体合金更好的机械性能。性能的提升归结于热失配、剪滞和Orawan机制共同作用的结果。
5展望
纳米相增强铝基复合材料是近年迅速发展起来的一种新型材料,表现出优异的理化和力学性能,机械合金化法在制备纳米铝基复合材料过程中表现出独特的优势,但距离工程化应用仍然存在成本高、制造效率低、可靠性与稳定性有待提高等新材料实用化过程中面临的共性问题,需要进一步攻关并逐一克服。
参考文献:
[1]王宇鑫,张瑜.铝基复合材料的研究[J].上海有色金属,2010,(31).
[2]TjongSC.Novelnanoparticle-reinforcedmetalmatrixcompositeswithenhancedmechanicalproperties[J].AdvEngMater,2007,(9).
[3]LerfR,MorrisDG.MechanicalalloyingofAl-Tialloys[J].MaterSciEngA,1990,(A128).
[4]WangSH,KaoPE.ThestrengtheningeffectofAl3TiinhightemperaturedeformationofAl-Al3Ticomposites[J].ActaMater,1998,(46).
纳米复合材料范文篇3
随着塑料工业的快速发展,塑料产品已经广泛应用到人们的生活当中,给人类带来了许多的便利,与此同时,由于人们对其大量需求致使废弃物中的塑料越来越多,这对生态环境造成了严重的污染。因而,现在许多科学家都在寻找新的环境友好型材料。其中生物可降解高分子材料就属于环境友好型材料,这其中最受人们关注的就是聚乳酸(PLA),具有良好的生物降解性,在微生物作用下分解为二氧化碳和水,对环境不会造成危害。人们之所以选择聚乳酸作为环境友好型材料来研究,是因为聚乳酸具有强度高,透明性好,生物相容性好等优点,可以应用于很多领域,包括医用、包装、纺织等。但是由于其结晶性能差,脆性大等缺点,使其在某些性能方面存在严重的不足,这就严重限制了聚乳酸的应用[1]。为了使聚乳酸能够更好的应用到各个领域,研究者们对其进行表面改性,使其性能得到改善,能够得到更好的应用。
1.生物可降解高分子材料
生物可降解高分子材料是环境友好型材料中最重要的一类。它是指在一定条件下,一定的时间内,能被细菌、真菌、霉菌、藻类等微生物或其分泌物在酶或化学分解作用下发生降解的一类高分子材料。由于其具有无毒、生物降解及良好的生物相容性等优点,生物降解高分子被广泛应用于医药、一次性用品、农业、包装卫生等领域。按照来源的不同,可将其分为天然可降解高分子和人工合成可降解高分子两大类。
天然可降解高分子:有淀粉、纤维素、蛋白质等,这类高分子可以自然生长,并且降解后的产物没有毒性,但是这类高分子大多不具备热塑性,加工起来困难,因此不常单独使用,只能与其它高分子材料掺混使用。
人工合成可降解高分子:有聚乳酸、聚己内酯、聚乙烯醇、聚己二酸乙二酯等。这类聚酯的主链大多为脂肪族结构单元,通过酯键相连接,主链比较柔软,容易被自然界中微生物分解。与天然可降解高分子材料相比较,人工合成可降解高分子材料可以在合成时通过控制温度等条件得到不同结构的产物,从而对材料物理性能进行调控,并且还可以通过化学或物理的方法进行改性[2]。
在以上众多的天然可降解高分子材料和人工合成可降解高分子材料中,天然可降解高分子材料加工困难,成本高,不被人们选中,因此,人们把目光集中在了人工合成可降解高分子材料中,这其中聚乳酸具有其良好的生物相容性、生物可降解性、优异的力学强度和刚性等性能,在诸多人工合成可降解高分子材料中脱颖而出,被人们所选中。
2.聚乳酸材料
在人工合成可降解高分子材料中,聚乳酸是近年来最受研究者们关注的一种。它是一种生物可降解的热塑性脂肪族聚酯,是一种无毒、无刺激性,具有良好生物相容性、强度高、可塑性加工成型的生物降解高分子材料。合成聚乳酸的原料可以通过发酵玉米等粮食作物获得,因此它的合成是一个低能耗的过程。废弃的聚乳酸可以自行降解成二氧化碳和水,而且降解产物经光合作用后可再形成淀粉等物质,可以再次成为合成聚乳酸的原料,从而实现碳循环[3]。因此,聚乳酸是一种完全具备可持续发展特性的高分子材料,在生物可降解高分子材料中占有重要地位。迄今为止,学者们对聚乳酸的合成、性质、改性等方面进行了深入的研究。
2.1聚乳酸的合成
聚乳酸以微生物发酵产物-乳酸为单体进行化学合成的,由于乳酸是手性分子,所以有两种立体结构。
聚乳酸的合成方法有两种;一种是通过乳酸直接缩合;另一种是先将乳酸单体脱水环化合成丙交酯,然后丙交酯开环聚合得到聚乳酸[4]。
2.1.1直接缩合[4]
直接合成法采用高效脱水剂和催化剂使乳酸低聚物分子间脱水缩合成聚乳酸,是直接合成过程,但是缩聚反应是可逆反应,很难保证反应正向进行,因此不易得到高分子量的聚乳酸。但是工艺简单,与开环聚合物相比具有成本优势。因此目前仍然有大量围绕直接合成法生产工艺的研究工作,而研究重点集中在高效催化剂的开发和催化工艺的优化上。目前通过直接聚合法已经可以制备具有较高分子量的聚乳酸,但与开环聚合相比,得到的聚乳酸分子量仍然偏低,而且分子量和分子量分布控制较难。
2.1.2丙交酯开环缩合[4]
丙交酯的开环聚合是迄今为止研究较多的一种聚乳酸合成方法。这种聚合方法很容易实现,并且制得的聚乳酸分子量很大。根据其所用的催化剂不同,有阳离子开环聚合、阴离子开环聚合和配位聚合三种形式。(1)阳离子开环聚合只有在少数极强或是碳鎓离子供体时才能够引发,并且阳离子开环聚合多为本体聚合体系,反应温度高,引发剂用量大,因此这种聚合方法吸引力不高;(2)阴离子开环聚合的引发剂主要为碱金属化合物。反应速度快,活性高,可以进行溶液和本体聚合。但是这种聚合很难制备高分子量的聚乳酸;(3)配位开环聚合是目前研究最深的,也是应用最广的。反应所用的催化剂主要为过渡金属的氧化物和有机物,其特点为单体转化率高,副反应少,易于制备高分子量的聚乳酸。但是开环聚合有一个缺点,所使用的催化剂有一定的毒性,所以目前寻找生物安全性高的催化剂成为配位开环聚合研究的重要方向。
2.2聚乳酸的性质
由于乳酸单体具有旋光性,因此合成的聚乳酸具有三种立体构型:左旋聚乳酸(PLLA)、右旋聚乳酸(PDLA)和消旋聚乳酸(PDLLA)。其中PLLA和PDLLA是目前最常用,也是最容易制备的。PLLA是半结晶型聚合物,具有良好的强度和刚性,但是其缺点是抗冲击性能差,易脆性断裂。而PDLLA是无定形的透明材料,力学性能较差[5]。
虽然聚乳酸具有良好的生物相容性和生物可降解性、优异的力学强度和阻隔性,但是聚乳酸作为材料使用时有明显的不足之处;韧性较差并且极易弯曲变形,结晶度高,降解周期难以控制,热稳定性差,受热易分解,价格昂贵等。这些缺点严重限制了聚乳酸的应用与发展[6]。因此,针对聚乳酸树脂原料进行改性成为聚乳酸材料在加工和应用之前必不可少的一道工序。
2.3聚乳酸的改性
针对聚乳酸的以上缺点,研究者们对其进行了增韧改性、增强改性和耐热改性,用以改善聚乳酸的韧性和抗弯曲变形能力,提高热稳定性,进一步增强聚乳酸材料。
2.3.1增韧改性
在常温下聚乳酸是一种硬而脆的材料,在用于对材料要求高的领域,需要对其进行增韧改性。增韧改性主要分为共混和共聚两种方法。但是由于共聚法在聚乳酸的聚合过程中工艺比较复杂,并且生产成本高,因此在实际工业生产中,主要用共混法来改善聚乳酸的韧性。共混法是将两种或两种以上的聚合物进行混合,通过聚合物各组分性能的复合达到改性目的[7]。为了拓展聚乳酸材料在工程领域的用途,研究者们常采用将聚乳酸与其它高聚物共混,这样一方面能够改善聚乳酸的力学性能和成型加工性能,另一方面也为获得新型的高性能高分子共混材料提供了有效途径。
增韧改性所用的共混法工艺比较简便,成本相应低一些,在实际工业生产中更加实用。不过受到聚乳酸本身的硬质和高模量限制,共混法改性目前主要方向为增韧、调控亲水性和降解能力。
2.3.2增强改性
聚乳酸本身为线型聚合物,分子链中长支链比较少,这就使聚乳酸材料的强度在一些场合满足不了使用的要求。因此要对其进行增强改性,使其强度达到要求。目前主要采用了玻璃纤维增强、天然纤维增强、纳米复合和填充增强等技术来对聚乳酸进行改性,用以提高聚乳酸材料的力学性能[7]。
目前,植物纤维和玻璃纤维对增强聚乳酸的力学性能效果相差不大,但是植物纤维价格低廉,并且对环境友好,因而成为对聚乳酸进行增强改性的常见材料。而填充增强引入了与聚合物基体性质完全不同的无机组分并且综合性能提升明显,因此受到广泛的关注。这其中,以纳米填充最有成效,填充后可以全面提升聚乳酸的热稳定性、力学强度、气体阻隔性、阻燃性等多种性能。此外,聚乳酸具有生物相容性和可降解的特性,因此用做人体骨骼移植、骨骼连接销钉等医学材料。
2.3.3耐热改性
耐热性差是生物降解高分子材料共有的缺点。聚乳酸的熔点比较低,因此它在高温高剪切作用下易发生热降解,导致分子链断裂,分子量降低,成型制品性能下降。因此需要对聚乳酸进行耐热改性,用以提高其加工性能,通常采用严格干燥、纯化和封端基等方式提高其热稳定性[8]。目前,添加抗氧剂是提高聚合物耐热性的常用方法,除了采用添加改性或与其它树脂共混改性来提高聚乳酸耐热性,还可以通过拉伸并热定型的方法提高聚乳酸的耐热性,与此同时,还可以改善其聚乳酸复合材料韧性和强度。在纺织、包装业等领域有很好的应用。
从上述几种改性结果来看,与聚乳酸相比,改性后的聚乳酸复合材料综合性能等方面都得到了全面的提升,在医学、纺织、包装业等领域都得到了很好的应用。因此,聚乳酸复合材料得到了人们的喜爱与关注,并逐渐将人们的生活与之紧紧联系在了一起。成为国内外研究者所要研究的重点对象。
3.聚乳酸复合材料及研究进展
3.1聚乳酸复合材料
经过改性剂改性过的聚乳酸复合材料是一种新型复合材料,它是以聚乳酸为基体,在其中加入改性剂混合用各种方式复合而成的。同时它具备与聚乳酸相同的无毒、无刺激性、良好的生物相容性等性质,但是在性能方面要都优于聚乳酸。聚乳酸复合材料在柔顺性、伸长率、力学、电、热稳定性等方面都表现出了优异的性能,目前已经将其应用与医学、农业、纺织、包装业和组织工程等[9]领域,应用非常广泛。
聚乳酸复合材料可以在微生物的作用下分解为二氧化碳和水,对环境不会造成任何的危害,加上其在各个方面都具有优异的性能,可以用于各个领域。因此成为了新一代的环境友好型材料被国内外的研究者们广泛关注。目前,就聚乳酸复合材料的研究,国内外研究者们都取得了一定的成果和进展。
3.2聚乳酸复合材料研究进展
由于聚乳酸作为生物相容,可降解环境友好材料,存在着结晶速度慢、结晶度低、脆性大等缺陷,将需要与具有优异导电、导热、力学性能,生物相容性等优点的填料复合进行填充改性[10]。这个方法成为目前国内外研究的重点。对于聚乳酸复合材料的研究以下是国内外研究者的研究进展。
盛春英[1]通过溶液共混法制备了聚乳酸/碳纳米管复合物,用红外光谱和DSC研究了复合材料的等温结晶和非等温结晶性能,重点研究了CNTs的种类、管径、管长、质量分数以及聚乳酸分子量对复合物结晶性能的影响,以及等温结晶对复合材料拉伸性能的影响。
范丽园[2]将左旋聚乳酸和纳米羟基磷灰石用含有亲水基团的JMXRJ改性剂,通过溶液共混法,加强两者亲水性能和结合能力。以碳纤维为增强体,制备出碳纤维增强改性PLLA基复合材料。并分析其化学结构、结晶行为、热性能以及等温结晶时晶球变化。
张东飞等[3]人介绍了碳纳米管制备的三种方法,即石墨电弧法、化学气相沉积法和激光蒸发法,并阐述了碳纳米管导热基本机理,对碳纳米管应用于复合材料热传导性能进行了研究与展望。
赵媛媛[4]采用溶液超声法,选用多壁碳纳米管作为填充物,制备聚乳酸/碳纳米管复合材料,并对其进行改性研究。以碳纳米管化学修饰及百分含量的变化对其在PLLA基体中的分散性、形态、结晶行为、力学性能和水解行为的影响为主要研究对象。
张凯[5]通过对有效的碳纳米管分布对复合材料的导电性能进行研究。并重点从形态调控角度,调节碳纳米管在高分子基体中的有效分布,构建了高效的导电网络。并从晶体排斥、相态演变、隔离的角度,设计三种不同形态的导电聚乳酸/复合材料,降低了材料的导电逾渗值。
冯江涛[6]通过采用混酸处理、表面活性剂修饰和表面接枝三种方法对对碳纳米管表面进行修饰,利用溶剂蒸发法制备聚乳酸/碳纳米管复合材料,采用红外吸收光谱、拉曼光谱、偏光显微镜、透射电镜、扫描电镜、差示扫描量热分析仪对复合材料的表面形貌和结构进行了分析和总结。
李艳丽[7]通过混合强酸酸化与马来酸酐接枝相结合,对碳纳米管表面修饰,增强了碳纳米管与聚乳酸之间的界面相互作用,获得了碳纳米管分散均匀的聚乳酸/碳纳米管纳米复合材料。并且研究不同条件下碳纳米管对聚乳酸结晶行为的影响,发现碳纳米管对聚乳酸的结晶有明显的异相成核作用。
许孔力等[8]人通过溶液复合的方法制备聚乳酸/碳纳米管复合材料,并对其力学性能和电学性能进行了详细的研究,而且对复合材料的应用前景进行了展望。
李玉[9]通过将聚乳酸与具有优异导电、导热、力学性能、生物相容性的碳基纳米填料进行填充改性。考察了静电纺丝参数对聚乳酸纤维的形貌影响,并且考察了不同含量的碳纳米管对复合纤维形貌和结构的影响。此外,还对静电纺丝和溶液涂膜制备工艺对复合材料性能影响。
赵学文[10]通过将碳纳米粒子引入聚合物共混体系实现了复合材料的功能化与高性能化。并且他们提出一种基于反应性碳纳米粒子的热力学相容策略,有效的提高了不相容共混物的界面粘附力,增强了材料的力学性能,同时赋予了导电等功能。
MosabKaseem等[11]人通过热、机械、电气和流变性质对聚乳酸基质中碳纳米管的类型、纵横比、负载、分散状态和排列的依赖性。对不同性能的研究表明,碳纳米管添加剂可以提高聚乳酸复合材料的性能。
MainakMajumder等[12]人通过对聚乳酸/碳纳米管复合材料制备和表征方面的研究,
综述有关碳纳米管在聚乳酸基质中分散的有效参数。并且将聚乳酸与不同材料结合用来改变其性能。
WenjingZhang等[13]人通过溶液共混制备了一系列PLLA/碳纳米管复合材料。测试了形态,机械性能和电性能。通过研究发现随着碳纳米管含量达到其渗透阈值,PLLA/碳纳米管复合材料的体积电阻降低了十个数量级。通过光学显微镜图像显示了纳米复合材料的球晶形态,用差示扫描量热法(DSC)测量,其结果显示,随着碳纳米管含量的增加,冷结晶温度升高。
EricD等[14]人通过研究在半结晶聚合物碳纳米管复合材料中,碳纳米管被视为可以影响聚合物结晶的成核剂。但是,由于碳纳米管的复杂性。不同的手性,直径,表面官能团,使用的表面活性剂和样品制备过程可能会影响复合材料结晶。研究了半晶复合材料的结构,形态和相关应用。简要介绍聚合物中的结晶和线性成核。使用溶液结晶方法揭示了界面结构和形态。
Kandadai等[15]人通过拉曼光谱分析表明PLLA和碳纳米管之间的相互作用主要通过疏水的C-CH3官能团发生。复合材料的直流电导率随碳纳米管负载的增加而增加。导电的碳纳米管增强的生物相容性聚合物复合材料可以潜在地用作新一代植入物材料,从而刺激细胞生长和通过促进物理电信号传递来使组织再生。
从以上国内外研究者的研究进展中,可以看到,大部分的研究者都是通过溶液共混的方法制备聚乳酸复合材料,这种方法对于国内外的研究者们来说比较简便可靠。并且他们将制备好后的聚乳酸复合材料通过红外光谱、扫描电子显微镜、透射电子显微镜、差示扫描量热、拉曼光谱和偏光显微镜等手段进行其结构和性能的观察和分析,发现聚乳酸复合材料的性能在各个方面都有显著的提高,并且可以应用与各个领域,应用前景非常广阔。聚乳酸复合材料作为新一代性能全面的环境友好型材料,国内外的研究者们对聚乳酸复合材料的研究还在进行着,并且对于它的发展都有很高的期待。
4.本课题的研究思路及研究内容
4.1研究思路
聚乳酸作为可降解生物材料,同时又具有生物相容性,力学性能好等优点。碳纳米管则具有良好的生物相容性,功能性等优点。将两种材料复合可以进一步改善聚乳酸结晶性能、力学性能、赋予其导电性。
对于聚乳酸/碳纳米管复合材料的制备可以通过共混法、原位聚合及静电纺丝法来制备,目前通常采用溶剂挥发法制备聚乳酸/碳纳米管复合材料。通过拉曼光谱、电子能谱、扫描电子显微镜、示差扫描量热来测定其结合能、材料表面形貌以及结晶、熔融温度等方面进行观察分析。
-
人民生活质量提高的表现范例(12篇)
人民生活质量提高的表现范文篇1关键词:GDP;生活水平;幸福指数1.前言GDP一直以来都是衡量社会经济发展的重要指标并应用至今。办随着中国经济的高速发展,公平、资源、环境、福利..
-
化工专业总结范例(3篇)
化工专业总结范文传统的三边工程是违背工程建设基本程序的,施工过程中的不可预见性、随意性较大,工程质量和安全隐患比较突出,工期不能按计划保证。在新的时展背景下,现在的三..
-
化工与化学工程的区别范例(3篇)
化工与化学工程的区别范文篇1关键词:水工环;图件类别;编制方法cartographyofhydrological-engineering-environmentalgeologymapsdonghua,zhangfa-wang,chengyan-pei,ga..
-
文物保护与开发范例(3篇)
文物保护与开发范文关键词:非物质文化遗产;泉州木偶;开发中图分类号:J528.3文献标识码:A文章编号:1005-5312(2013)14-0158-01一、泉州木偶作为非物质文化遗产的艺术价值与艺术特点(..
-
文物价值评估方法范例(3篇)
文物价值评估方法范文篇1[关键词]实物期权高新技术企业企业价值评估20世纪90年代以来,随着现代科技与经济的高速发展,各类高新技术企业迅速崛起,高新技术企业备受关注,高新..
-
室内实训总结范例(3篇)
室内实训总结范文关键词:大数据时代;高职院校;软件技术DOI:10.16640/ki.37-1222/t.2017.03.1130引言早在2008年教育部就有相关文件指出要将专业实训室基地建设作为高职院校发展..
-
生态城市的基本特征范例(12篇)
生态城市的基本特征范文【摘要】城市轴线往往串连城市的行政、商业、文化等中心区,并与城市的自然景观或人文景观形成对景,城市中轴线往往是城市中心功能聚集的地区,也是最能..
-
国学启蒙教育的好处范例(3篇)
国学启蒙教育的好处范文1义务教育阶段开展职业启蒙教育的必要性与高校、高职阶段的职业启蒙教育有所不同的是,初中、小学阶段的职业启蒙教育并不是针对就业,而是通过开展一系..